
$36�IRU�]�26

Issue 2, February 2002

FXVWRPL]DWLRQ�IDFLOLW\�
XVHU
V�JXLGH

&XVWRPL]DWLRQ�
cupubb.book Page 1 Thursday, February 14, 2002 1:40 PM

Copyright © 2002 Micro Focus International Limited.
All rights reserved.

Micro Focus International Limited has made every effort to ensure that this book is
correct and accurate, but reserves the right to make changes without notice at its sole
discretion at any time. The software described in this document is supplied under a
license and may be used or copied only in accordance with the terms of such license,
and in particular any warranty of fitness of Micro Focus software products for any
particular purpose is expressly excluded and in no event will Micro Focus be liable for
any consequential loss.

Animator®, COBOL Workbench®, EnterpriseLink®, Mainframe Express®,
Micro Focus®, Net Express®, REQL® and Revolve® are registered trademarks, and
AAI™, Analyzer™, Application to Application Interface™, AddPack™, AppTrack™,
AssetMiner™, CCI™, DataConnect™, Dialog System™, EuroSmart™, FixPack™,
LEVEL II COBOL™, License Management Facility™, License Server™,
Mainframe Access™, Mainframe Manager™, Micro Focus COBOL™, Object COBOL™,
OpenESQL™, Personal COBOL™, Professional COBOL™, Server Express™,
SmartFind™, SmartFind Plus™, SmartFix™, SourceConnect™, Toolbox™, WebSync™,
and Xilerator™ are trademarks of Micro Focus International Limited. All other
trademarks are the property of their respective owners.

No part of this publication, with the exception of the software product user
documentation contained on a CD-ROM, may be copied, photocopied, reproduced,
transmitted, transcribed, or reduced to any electronic medium or machine-readable
form without prior written consent of Micro Focus International Limited.

Licensees may duplicate the software product user documentation contained on a CD-
ROM, but only to the extent necessary to support the users authorized access to the
software under the license agreement. Any reproduction of the documentation,
regardless of whether the documentation is reproduced in whole or in part, must be
accompanied by this copyright statement in its entirety, without modification.

U.S. GOVERNMENT RESTRICTED RIGHTS. It is acknowledged that the Software and the
Documentation were developed at private expense, that no part is in the public
domain, and that the Software and Documentation are Commercial Computer
Software provided with RESTRICTED RIGHTS under Federal Acquisition Regulations
and agency supplements to them. Use, duplication or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of The
Rights in Technical Data and Computer Software clause at DFAR 252.227-7013 et. seq.
or subparagraphs (c)(1) and (2) of the Commercial Computer Software Restricted
Rights at FAR 52.227-19, as applicable. Contractor is Micro Focus, 9420 Key West
Avenue, Rockville, Maryland 20850. Rights are reserved under copyright laws of the
United States with respect to unpublished portions of the Software.

20020214134102

cupubb.book Page 2 Thursday, February 14, 2002 1:40 PM

3

cupubb.book Page 3 Thursday, February 14, 2002 1:40 PM
Table of Contents

1 Customization Facility Concepts. 5

2 Structures . 15

3 Sample Macros. 55
% IF Structure Example . 55

Discussion . 58

Looping Example . 59
Discussion . 61

Customization Facility Functions Example . 62
Discussion . 65

The $DAYDEF Macro . 65
The Program: . 66

Program Location Statements Example . 66
Discussion . 69

4 Administration. 73
Customization Facility User’s Guide

4

cupubb.book Page 4 Thursday, February 14, 2002 1:40 PM
Customization Facility User’s Guide

5

cupubb.book Page 5 Thursday, February 14, 2002 1:40 PM
1 Customization Facility
Concepts

Use facility to
modify APS

macros and write
your own

The APS Customization Facility is a high-level tool that lets you
customize APS. With this tool, you can write macros--sometimes
referred to as rules--to modify and supplement the default APS
processing logic. Specifically, you can:

• Modify and extend the APS software macros, which reside in the
APSMACS PDS or data set in the APS software.

• Write your own supplemental macros in the USERMACS PDS or
data set in your APS Project and Group.

A Customization Facility macro is a source code component that you
can reuse in any APS application. You write macros using high-level
Customization Facility structures that are similar to COBOL structures,
but offer more functionality with less coding. To call macros in your
programs, simply assign macro calls to Online Express program
functions and control points; when writing programs using the
Program Painter, you simply write macro calls in the programs. In these
calls, you pass values to variables in the macros according to your
program requirements. For example, APS might process a macro that
performs a loop and builds a table, based on the size, data name, and
PIC clause values that you pass to it. You generate programs that
invoke macros just as you generate any APS program. At generation,
the Customization Facility processes the macros and includes them in
your program; no extra generation steps are required.

The Customization Facility Control System lets APS administrators
regulate developer access to user-defined Customization Facility
macros. Use it to do any of the following:

• Restrict all developers from using any user-defined macros
(default).

• Allow all developers to use any user-defined macro.

• Specify selected user-defined macros that all developers can use.
Customization Facility User’s Guide

6 Chapter 1 Customization Facility Concepts

cupubb.book Page 6 Thursday, February 14, 2002 1:40 PM
Types of source code

You can write macros containing any combination of the following
types of source code:

• Customization Facility structures.

• COBOL or COBOL/2.

• S-COBOL, a set of COBOL-like APS programming structures that you
can use in macros and APS programs. For information, see the APS
Reference.

Customization Facility structures

The Customization Facility provides the following structures that you
can use in macros and APS programs as well.

Structure Description

% BEGIN Positions source code in a specific column in the
output.

% DECLARE Lets you organize macro symbols into tables,
providing an associative memory capability

% DEFINE Use to begin defining a macro; assign its name
and variables that receive values from macro
calls.

% ESCAPE Exits a macro.

&function Executes predefined Customization Facility
functions.

% IF ...
% ELSE-IF ...
% ELSE

Evaluates one or more conditions.

% INCLUDE Opens, reads, and processes a file in a macro.

% LOOKUP References a % DECLARE table.

% REPEAT Establishes a loop.

% SET Specifyies the program location where the
Customization Facility places source code.

% UNTIL/WHILE Establishes a loop and test a condition; use to
add a condition test to a % REPEAT loop.

% &variable = value Assigns a value to a variable.
Customization Facility User’s Guide

7

cupubb.book Page 7 Thursday, February 14, 2002 1:40 PM
Customization Facility structures use the reserved symbols described
below.

Define macros

You define macros in the USERMACS PDS or data set in your APS Project
and Group. All macros:

• Begin with a % DEFINE statement that assigns a name to the macro
and can include any number of formal argument variables. A formal
argument variable receives values, called actual arguments, from
the macro calls that invoke the macro.

<> APS-supplied macros are assigned "less-than"
(<) and "greater than" (>) as evaluation
brackets.

Structure Description

Symbol Description

% When % is the first character on a line, it identifies the entire
line as a Customization Facility statement.

When % is the first character in a pair of evaluation brackets,
it identifies the source in the brackets as a Customization
Facility statement.

& &dataname is a variable. Generally, you code variables in
macros and assign values to them in your APS programs. In
addition, you can both define and assign values to variables in
your programs. You can use variables in a Customization
Facility statement or embed them in a line of COBOL or S-
COBOL.

&functionname is a predefined Customization Facility
function.

$ $macroname is a macro definition statement or macro call.
Generally, you code macro definitions in your USERMACS files,
and macro calls in your programs. You can use macro calls in a
Customization Facility statement or embed them in a line of
COBOL or S-COBOL.

+ &dataname+suffix appends a literal suffix to a variable.

&columnnumber+source designates the column where the
facility processor places source code in the output.
Customization Facility User’s Guide

8 Chapter 1 Customization Facility Concepts

cupubb.book Page 8 Thursday, February 14, 2002 1:40 PM
• Contain any combination of Customization Facility structures,
COBOL or COBOL/2 source, or S-COBOL source.

• End with an % END statement, or any source code starting in the
same column as the % DEFINE statement.

Include macros in applications

To include a macro in your application, you specify its macro library
name on the Application Painter, in the User Mac field. In addition, you
specify in the Location field the program location where you want to
include it. Alternatively, you can code an % INCLUDE statement in the
program at the desired location.

Invoke macros in programs

To invoke a macro, use one of the following methods depending on
which APS tool you use to define your program:

Generation processes

When you generate an application that invokes Customization Facility
macros, APS processes the application as follows:

• Ensures that each component of your application exists.

• Generates APS symbols for the windows or screens, for use by the
APS Precompiler.

• Generates the window or screen source native to your DC
environment, such as BMS or MFS mapsets.

APS Tool Invocation Method

Online Express Assign a macro call to a program function or control
point, using the Alternate Functions, PF Key Functions,
Special Key Definition, Control Points, or Database Call
Tailoring window. In the call, you can pass values to the
variables in the macro.

Program
Painter

Write a macro call at the desired program location. In
the call, you can pass values to the variables in the
macro.
Customization Facility User’s Guide

9

cupubb.book Page 9 Thursday, February 14, 2002 1:40 PM
• Arranges all APS program specifications into proper COBOL
program organization.

• Inserts all externally-defined components--such as APS macros, user-
defined Customization Facility macros, COBOL copylibs, and APS
data structures--at the program locations you specify in the
programs or Application Painter.

• Processes all APS macro and user-defined Customization Facility
macro symbols and structures into COBOL source as follows:

• Replaces all variables with their assigned values

• Passes all actual arguments of macro calls to the formal
arguments of their coresponding macro definitions

• Builds loop tables and inserts them in the program

• Replaces all Customization Facility functions with their
underlying source code

• Moves all source code to the program locations you specify
using % SET statements

• Calls all macros and files called within other macros and
processes them

• Processes all APS database and data communications calls into
COBOL source.

• Translates any APS Report Writer source to COBOL source.

• Writes a temporary error message file and sorts it into the COBOL
compiler error message file. The combined error message file
presents messages sorted by program line number, with both types
of messages appearing where appropriate.

Macro processing example

The following example shows two sample user macros--$CONSTRUCT-FD
and $DAYDEF--and how a program invokes and uses them. To illustrate
how APS processes macros, we show the program at two stages of
generation:

• Before APS inserts the macro source in the program. The program at
this stage is stored in the GENSRC PDS or data set in your Project and
Group.
Customization Facility User’s Guide

10 Chapter 1 Customization Facility Concepts

cupubb.book Page 10 Thursday, February 14, 2002 1:40 PM
• After APS inserts the macro source in the executable COBOL
program.

The macros are defined in a USERMACS file as shown below. The
$CONSTRUCT-FD macro writes FD statements. The developer calls the
macro in the program and passes arguments--the FD file names--to the
FD file name variable in the macro. The $DAYDEF macro builds a
Working-Storage symbol table. The developer calls the macro
repeatedly in the program and passes arguments--literal strings and
their lengths--to the string and length variables in the macro.

User-defined macros:
% DEFINE $CONSTRUCT-FD(&FILE-NAME)
 FD &FILE-NAME
 BLOCK CONTAINS 0 RECORDS
 LABEL RECORDS ARE STANDARD.
% END

% DEFINE $DAYDEF(&DAY, &LEN)
 % &DAYCTR = &DAYCTR + 1
 02 FILLER.
 03 FILLER PIC S9(2) COMP SYNC VALUE +&LEN.
 03 FILLER PIC X(9) VALUE &QT&DAY&QT.
% END

Program before APS includes the macro source:
 % &REC-LEN = 121 315.
 % &DAYCTR = 0 316.
 % &QT = "’" 317.
 318.
 IDENTIFICATION DIVISION. 319.
 PROGRAM-ID. EXAMPLE3. 320.
*SPECIAL CONSIDERATIONS. 321.
* SAMPLE PROGRAM: CALLS TO MACROS THAT WRITE 322.
* AN FD STATEMENT AND BUILD A TABLE. 323.
 324.
 ENVIRONMENT DIVISION. 325.
 INPUT-OUTPUT SECTION. 326.
 FILE-CONTROL. 327.
 SELECT INPUT-FILE ASSIGN-UT-S-INPUT. 328.
 SELECT OUTPUT-FILE ASSIGN-UT-S-OUTPUT. 329.
 330.
 DATA DIVISION. 331.
Customization Facility User’s Guide

11

cupubb.book Page 11 Thursday, February 14, 2002 1:40 PM
 FILE SECTION. 332.
 333.
 $CONSTRUCT-FD(’INPUT-FILE’) 334.
 01 INPUT-RECORD PIC X(&REC-LEN). 335.
 336.
 $CONSTRUCT-FD(’OUTPUT-FILE’) 337.
 01 OUTPUT-RECORD PIC X(&REC-LEN). 338.
 WORKING-STORAGE SECTION. 340.
 341.
 01 DAY-TABLE. 342.
 $DAYDEF(’SUNDAY’, 6) 343.
 $DAYDEF(’MONDAY’, 6) 344.
 $DAYDEF(’TUESDAY’, 7) 345.
 $DAYDEF(’WEDNESDAY’, 9) 346.
 $DAYDEF(’THURSDAY’, 8) 347.
 $DAYDEF(’FRIDAY’, 6) 348.
 $DAYDEF(’SATURDAY’, 8) 349
 01 DAY-TABLE-REDEF REDEFINES DAY-TABLE 350.
 02 DAY-ENTRY OCCURS &DAYCTR. 351.
 03 DAY-LEN PIC S9(2) COMP SYNC. 352.
 03 DAY-BOL PIC X(9). 353.

Program after APS includes the macro source:
030200 315
030800 316.
031100 317.
031800 318.
031900 IDENTIFICATION DIVISION. 319.
032000 PROGRAM-ID. EXAMPLE3. 320.
032100*SPECIAL CONSIDERATIONS. 321.
032200* SAMPLE PROGRAM: CALLS TO MACROS THAT WRITE 322.
032300* AN FD STATEMENT AND BUILD A TABLE 323.
032400 324.
032500 ENVIRONMENT DIVISION. 325.
032600 INPUT-OUTPUT SECTION. 326.
032700 FILE-CONTROL. 327.
032800 SELECT INPUT-FILE ASSIGN-UT-S-INPUT. 328.
032900 SELECT OUTPUT-FILE ASSIGN-UT-S-OUTPUT. 329.
033000 330.
033100 DATA DIVISION. 331.
033200 FILE SECTION. 332.
033300 333.
033400 FD INPUT-FILE 334.
033402 BLOCK CONTAINS 0 RECORDS 334.
033404 LABEL RECORDS ARE STANDARD. 334.
033500 01 INPUT-RECORD PIC X(121). 335.
Customization Facility User’s Guide

12 Chapter 1 Customization Facility Concepts

cupubb.book Page 12 Thursday, February 14, 2002 1:40 PM
033600 336.
033700 FD OUTPUT-FILE 337.
033702 BLOCK CONTAINS 0 RECORDS 337.
033704 LABEL RECORDS ARE STANDARD. 337.
033800 01 OUTPUT-RECORD PIC X(121). 338.
033900 339.
034000 WORKING-STORAGE SECTION. 340.
034100 341.
034200 01 DAY-TABLE. 342.
034300 02 FILLER. 343.
034302 03 FILLER PIC S9(2) COMP SYNC VALUE +6. 343.
034304 03 FILLER PIC X(9) VALUE ’SUNDAY’. 343.
034400 02 FILLER. 344.
034402 03 FILLER PIC S9(2) COMP SYNC VALUE +6. 344.
034404 03 FILLER PIC X(9) VALUE ’MONDAY’. 344.
034500 02 FILLER. 345.
034502 03 FILLER PIC S9(2) COMP SYNC VALUE +7. 345.
034504 03 FILLER PIC X(9) VALUE ’TUESDAY’. 345.
034600 02 FILLER. 346.
034602 03 FILLER PIC S9(2) COMP SYNC VALUE +9. 346.
034604 03 FILLER PIC X(9) VALUE ’WEDNESDAY’. 346.
034700 02 FILLER. 347.
034702 03 FILLER PIC S9(2) COMP SYNC VALUE +8. 347.
034704 03 FILLER PIC X(9) VALUE ’THURSDAY’. 347.
034800 02 FILLER. 348.
034802 03 FILLER PIC S9(2) COMP SYNC VALUE +6. 348.
034804 03 FILLER PIC X(9) VALUE ’FRIDAY’. 348.
034900 02 FILLER. 349.
034902 03 FILLER PIC S9(2) COMP SYNC VALUE +8. 349.
034904 03 FILLER PIC X(9)VALUE ’SATURDAY’. 349.
035000 01 DAY-TABLE-REDEF REDEFINES DAY-TABLE. 349.
035100 02 DAY-ENTRY OCCURS 7. 351.
035200 03 DAY-LEN PIC S9(2) COMP SYNC. 352.
035300 03 DAY-BOL PIC X(9). 353.

Related Topics

See... For more information about...

% BEGIN

Functions, Customization Facility

Positioning source code in a specific
column in the output

% DECLARE Organizing macro symbols into
tables, providing an associative
memory capability
Customization Facility User’s Guide

13

cupubb.book Page 13 Thursday, February 14, 2002 1:40 PM
% DEFINE Writing macro definition
statements

% ESCAPE Exiting macros

Functions, Customization Facility Executing predefined
Customization Facility processes

% IF/ELSE-IF/ELSE Evaluating conditions

Evaluation Brackets Specifying the order in which the
Customization Facility evaluates
variable values

% INCLUDE Opening, reading, and processing
files in macros

% LOOKUP Referencing % DECLARE tables

% REPEAT

% UNTIL/WHILE

Establishing loops and testing
conditions

% SET Statements Specifying the program location
where the Customization Facility
places source code; overriding
processing defaults

Variable Assignment Statements Assigning values to variables

See... For more information about...
Customization Facility User’s Guide

14 Chapter 1 Customization Facility Concepts

cupubb.book Page 14 Thursday, February 14, 2002 1:40 PM
Customization Facility User’s Guide

15

cupubb.book Page 15 Thursday, February 14, 2002 1:40 PM
2 Structures

This chapter lists the structures you can use to customize APS.

% BEGIN

Description: Use in conditional or looping statement blocks to control the number
of columns that APS moves the blocks during processing. The number
of columns that % BEGIN is indented from a conditional or looping
construct is the same number of columns that APS moves the
subordinate block to the left. For example, if % BEGIN is indented four
columns from an IF statement, all lines subordinate to % BEGIN move
four columns to the left during processing. Any text at the same or
lesser indentation than % BEGIN stops the effect of % BEGIN, and
default processing resumes. Default processing moves the block to the
starting column of the controlling conditional or looping construct.

Syntax: % BEGIN

Comments: Do not use the Customization Facility function
&columnnumber+source with % BEGIN.

Examples: Override default processing to shift the IF statement’s subordinate
statement block to start at column 12. Default processing shifts the
block instead to the starting column of the IF statement--column 8--as
shown below:

Input:

Column: 8...12..16
 % IF &TYPE = ’NEW’
 01 INV-ITEM.
 05 PART-CLASS.
 10 PART-NUMBER PIC X(5).
Customization Facility User’s Guide

16 Chapter 2 Structures

cupubb.book Page 16 Thursday, February 14, 2002 1:40 PM
Default output:

Column: 8...12..16
 01 INV-ITEM.
 05 PART-CLASS.
 10 PART-NUMBER PIC X(5).

Use % BEGIN to force the statement block to start at column 12:

Input:

Column: 8...12..16
 % IF &TYPE = ’NEW’
 % BEGIN
 01 INV-ITEM.
 05 PART-CLASS.
 10 PART-NUMBER PIC X(5).

Output:

Column: 8...12..16
 01 INV-ITEM.
 05 PART-CLASS.
 10 PART-NUMBER PIC X(5).

Related Topics:

Comments

Description: Document Customization Facility source code with Comments.

Syntax: %* comment text

Comments: • A comment can start in any column, but must appear on a line by
itself.

See... For more information about...

Functions,
Customization Facility

Specifying the column number to place source
code in the output

% REPEAT

% UNTIL/WHILE

Placement of looping structure output
Customization Facility User’s Guide

17

cupubb.book Page 17 Thursday, February 14, 2002 1:40 PM
• Indent Comments at the same or lesser indentation as the source
code above it so that you do not interrupt the proper COBOL
indentation of your macro.

Example: % DEFINE $SAMPLE-MACRO(ARG1, ARG2)
%* comment text
%* more comment text

Related Topics:

Continuation

Description: Continue Customization Facility statements on additional lines.

Description:

Examples: Continue a macro definition.

% DEFINE $SAMPLE-MACRO(&ARG1, &ARG2, &ARG3,
% ... &ARG4)

See... For more information about...

APS Reference
Comments

Documenting APS source with Comments

Statement Continuation Method

Macro definition Break the line after any comma in the
argument list; skip to the next line and
code a percent symbol, space, ellipsis,
and at least one space (% ...).

Macro call Break the line after any comma in the
argument list; skip to the next line and
code an ellipsis and at least one space
(...).

Literal string in a variable
assignment statement

Break the line anywhere in the string
by coding a hyphen; skip to the next
line and code a percent symbol, space,
ellipsis, and at least one space (% ...).

All other statements Break the line after a blank space by
coding a hyphen; skip to the next line
and code a percent symbol, space,
ellipsis, and at least one space (% ...).
Customization Facility User’s Guide

18 Chapter 2 Structures

cupubb.book Page 18 Thursday, February 14, 2002 1:40 PM
Continue a macro call.

$TABLE-MAKER(3, 4, ’ENTRY’, ’ITEM’,
... ’X(4) VALUE SPACES’)

Continue a literal string variable value by coding a hyphen anywhere in
the string.

% &VARIABLE = ’THIS WORKS-
% ... FINE’
% &VARIABLE = ’THIS WORKS FI-
% ... NE TOO’

Continue other statements where a space occurs.

% REPEAT VARYING &IM-TARG FROM -
% ... 1 TO 20
% IF &APS-IDENT < 8 -
% ... OR &APS-INDENT > 11

Related Topics:

% DECLARE

Description: Define a % DECLARE table made of variable assignments that can be
referenced either directly (after assigning values to its subscripts), or by
searching with the % LOOKUP structure. Help access a loaded table
made of variable assignments.

Syntax: % DECLARE &fieldname(&subscript1)[...(&subscriptN)]
 [% &declarepart1 [Xn|Nn|REDEFINES]
 .
 .
 .
 % &declarepartN [Xn|Nn|REDEFINES]]
[% END]

See... For more information about...

APS Reference:
"About Data Communication Calls"
"About Data Structures"
"About Database Calls"
"About S-COBOL Structures"

Continuing APS statements
Customization Facility User’s Guide

19

cupubb.book Page 19 Thursday, February 14, 2002 1:40 PM
Parameters:

Comments: • Assign at least one &declarepart of each &fieldname a value in
order to reference other &declareparts for the same &fieldname.

• Values of &declareparts can be changed by conventional APS
variable assignment statements.

• &Declareparts can be accessed in the same manner as any other
variable except when accessed by the following functions: &INDEX,
&LENGTH, &NUMERIC, &PARSE, &SUBSTR.

• &Declareparts can be redefined with REDEFINES or REDEF.
REDEFINES indicates that it shares the same DECLARE storage as the
&declarepart immediately preceding it at the same level of
indentation.

• The maximum number of % DECLARE tables per program is 200.

Examples: • Although &subscript &KEY has already been set to several values,
the most common value is 1. The current values of &FILE and

&declarepart Subscript-part of &fieldname. Indentation
indicates subordination. Note the following:

• Do not use an &declarepart as a &subscript.

• If an alphanumeric or numeric picture clause
(Xn or Nn) assigns a fixed length to a
&declarepart, and &fieldname has more
than one &declarepart, each &declarepart
needs a picture clause.

• The maximum &declareparts sum in one
DECLARE structure level is 78 bytes.

• The maximum number of &declareparts per
table is 1000.

&fieldname Name-assignment statement with zero or more
subscripts and up to 78 &declareparts in each
structure level.

&subscript Set members of single- or multi-dimensional
arrays. Values are numbers or strings (maximum
12 characters). For numeric values, the counter
starts at 1 and increments until the end of the
numeric value. The maximum number of
&subscripts per program is 300.
Customization Facility User’s Guide

20 Chapter 2 Structures

cupubb.book Page 20 Thursday, February 14, 2002 1:40 PM
&KEY&FILE-KEY-NAME determine &FILE-KEY-1-NAME, whereas
&FILE-KEY-1-NAME always references key 1, regardless of the &KEY
value.

% DECLARE &(&FILE)-KEY-(&KEY)-A
 % &FILE-KEY-NAME X30
 % &FILE-KEY-TYPE X
 % &FILE-KEY-LEN N4
% DECLARE &(&FILE)-KEY-1-A
 % &FILE-KEY-1-NAME X30
 % &FILE-KEY-1-TYPE X
 % &FILE-KEY-1-LEN N4
 .
 .
 .

• Access fixed-length strings of screen field attribute records that are
stored in the SCRSYMB file. The following % DECLARE:

% DECLARE &(&SCX-SCR)-XFLD-(&SCX-FLD)
 % &SCP-FLD-NAME X16
 % &SCP-REP-CNT N3
 % &SCP-REP-COL N3
 % &SCP-FLD-SHORT X8
 % &SCP-FLD-FI
 % &SCP-FLD-LEN N3
 % &SCP-FLD-ROW N3
 % &SCP-FLD-COL N3
 % &SCP-FLD-ATTRS
 % &SCP-FLD-PROT X
 % &SCP-FLD-INTENS-FLG X
 % &SCP-FLD-MDT-FLG X
 % &SCP-FLD-NUM-FLG X
 % &SCP-FLD-EXT-ATTRS
 % &SCP-FLD-RVID-FLG X
 % &SCP-FLD-BLINK-FLG X
 % &SCP-FLD-UNDER-FLG X
 % &SCP-FLD-COLOR X2
 % &SCP-FLD-DET-FLG X
 % &SCP-FLD-EDIT-FLG N
 % &SCP-FLD-IM-MOD X

• Accommodates these fixed-length record strings stored in
SCRSYMB:

% &DMOL-XFLD-1 = "PART-NBR 0 08 8 6 19UNTFFFF F1F"
% &DMOL-XFLD-2 = "SHORT-DESC 0 0 13 8 19PNTFFFF F0F"
% &DMOL-XFLD-3 = "LOCATION 5 3 12 12 5PNTFFFF F0F"
 . . .
Customization Facility User’s Guide

21

cupubb.book Page 21 Thursday, February 14, 2002 1:40 PM
• Directly reference a DECLARE table.

% DECLARE &VS-(&VSX-FILE)-KEY-(&VSX-KEY)-B
 % &VSP-FILE-KEY-VOL X8
 % &VSP-FILE-KEY-SPACE X20
 % &VSP-FILE-KEY-CICZ X20
 .
 .
 .
% &VSX-FILE = "FILE3"
% &VSX-KEY = 2
 .
 .
 .
% &VOL = &VSP-FILE-KEY-VOL

• Reference a DECLARE table with % LOOKUP.

% DECLARE &IMS-PCB-(&PCBX)-SEG-(&SEGX)
 % &IMS-PCB-SEG-NAME X30
 % &IMS-PCB-SEG-IMSNAME X8
 % &IMS-PCB-SEG-PROCOPTS
 % &IMS-PCB-SEG-PROCOPT-GET N
 % &IMS-PCB-SEG-PROCOPT-ISRT N
 % &IMS-PCB-SEG-PROCOPT-REPL N
 % &IMS-PCB-SEG-PROCOPT-DLET N
 % &IMS-PCB-SEG-LEN N6
 .
 .
 .
% LOOKUP &IMS-PCB-SEG-NAME = &THE-SEG-NAME-YOU-WANT FROM 1 1
 .
 .
 .
% ELSE
 .
 .
 .

• Reference a loaded table by coding a table of value assignments;
use % DECLARE to name the table and define &subs for the table
name.

% DECLARE &OPERATOR-(&OPR)
 % &OPERATOR X2
 % &OPERATOR-SYMBOL X
% &OPERATOR-1 = "EQ="
% &OPERATOR-2 = "LT<"
% &OPERATOR-3 = "GT>"
Customization Facility User’s Guide

22 Chapter 2 Structures

cupubb.book Page 22 Thursday, February 14, 2002 1:40 PM
% &OPERATOR-4 = "MI-"
% &OPERATOR-5 = "PL+"
% &OPERATOR-6 = "TIX"
% &OPERATOR-7 = "DI/"

• Load a table of value assignments by varying the &subs of a %
DECLARE statement.

% DECLARE &VS-OPT-(&VSX-OPT)
 % &VS-FILE-OPT
% REPEAT VARYING &VSX-OPT FROM 1
% WHILE &DEFINED(&SCR-OPTS-<&VSX-OPT>)
 % &VS-FILE-OPT = &DEFVAL

Related Topics:

% DEFINE

Description: Specify the name and formal arguments when defining a macro in a
USERMACS file or APS program.

Syntax: % DEFINE $macroname [(&formalarg1[, &formalarg2,
% ... &formalarg3, ..., &formalarg1000])]
 statementblock
[% END]

Parameters:

Examples: Define a macro with three formal arguments whose values are supplied
by a call that invokes the macro.

% DEFINE $ITEM-MAKER(&MM, &DATANAME, &TAIL)
. . .
% END

See... For more information about...

% LOOKUP Referencing a % DECLARE table

&formalarg Formal argument list. Formal arguments receive
their values from actual arguments in a macro
call. Separate arguments with a comma and
optionally one or more spaces. Enclose the
argument list in parentheses.

$macroname Valid COBOL name.
Customization Facility User’s Guide

23

cupubb.book Page 23 Thursday, February 14, 2002 1:40 PM
Macro call:

$ITEM-MAKER(12, ’TEST-ITEM’, ’S9(9) COMP SYNC VALUE -1’)

Related Topics:

Error Handling, Macros

Compatibility All targets

Description: APS writes error messages to a temporary file, passes them to the APS
Precompiler, and displays them in the final APS message report of the
compile.

Sending Messages

Send your own messages to the report, classified with a severity level,
by coding one of the following SET statements:

% SET FATAL messagetext
% SET ERROR messagetext
% SET WARNING messagetext
% SET INFO messagetext

% SET FATAL ends all translation. Enclose variables in the message text
within evaluation brackets.

Error Trace % SET TRACE ERROR is an error trace mechanism that appears by
default in the APS CNTL file APSDBDC. The trace identifies:

• Line of source that caused the error

• Active % INCLUDE statements

• Active macros

• Number of loops completed at the time of error (if applicable)

The severity codes of errors traced are: F(atal), E(rror), W(arning), and
I(nformation). To exclude Information messages, append the keyword
NOINFO to the % SET TRACE ERROR statement. To trace a selected

See... For more information about...

Macro Call Calling macros
Customization Facility User’s Guide

24 Chapter 2 Structures

cupubb.book Page 24 Thursday, February 14, 2002 1:40 PM
section of your macro or program, code % SET TRACE ERROR and the
beginning of the section, and % SET NOTRACE at the end.

Debugging with WRITE-CONTROL

% SET WRITE-CONTROL prints all Customization Facility input source in
the output source, enabling you to view both the input and output
source together, in context. It prints all error messages immediately
below the source lines in error; they appear as COBOL Comments. This
feature is especially helpful when examining complicated evaluation
bracket processing.

Related Topics:

% ESCAPE

Description: Stop processing the remaining lines of a macro and resume processing
with the line immediately following the macro call.

Syntax: % ESCAPE

Related Topics:

See... For more information about...

% SET Statements Coding other % SET statements

Evaluation Brackets Processing with evaluation brackets

See... For more information about...

APS Reference:
"ESCAPE"
"STOP RUN"

Terminating APS programs

APS Reference:
"MSG-SW"
"LINK"
"XCTL"

Calling or linking to other programs or
subprograms
Customization Facility User’s Guide

25

cupubb.book Page 25 Thursday, February 14, 2002 1:40 PM
Evaluation Brackets

Description: Specify the order in which the Customization Facility evaluates variable
values.

Syntax:

Format 1: ... <% source> [...]

Format 2: ... <source> [...]

Parameters:

Comments: • In a line that contains source in evaluation brackets, the
Customization Facility processor evaluates that source first.

• In a line that contains multiple evaluation brackets, the processor
evaluates the innermost bracket first, and the outermost bracket
last.

• The Customization Facility processor evaluates evaluation bracket
source as follows:

• Replaces Customization Facility variables with their assigned
values

• Calculates the result if the source is a non-Customization Facility
expression--that is, if the first character inside the brackets is not
the % character

• Does not calculate the result if the source is a Customization
Facility expression--that is, if the first character inside the
brackets is the % character

• Bracketed source in % UNTIL and % WHILE loops is evaluated at
each iteration of the loop; source in % REPEAT and % REPEAT
VARYING loops is evaluated just once.

source Can include:

• An arithmetic expression; can include
variables, numbers, and literals.

• Variables
Customization Facility User’s Guide

26 Chapter 2 Structures

cupubb.book Page 26 Thursday, February 14, 2002 1:40 PM
• The default evaluation bracket characters are the < and >
characters. Depending on how you use them, they can be either
evaluation brackets or relational operators, as shown below.

• To override the default evaluation bracket characters, change the
value of the % SET EVAL-BRACKETS statement in the APS CNTL file,
APSDBDC. Do not define parentheses as bracket characters; we
recommend using the square bracket characters [and] instead. You
can also define a second, or auxiliary, set of evaluation brackets.
When doing so, follow these rules:

• Ensure that a first set of bracket characters is defined by the %
SET EVAL-BRACKETS statement.

• Define the auxiliary bracket characters by defining the % SET
EVAL-BRACKETS-AUX statement:

• At intermediate stages in the use of evaluation brackets, a line of
text can be expanded to exceed the right margin as long as the final
line of output source fits in columns 7-72 (or 1-80 in Lang=Text
mode, or 1-72 in Lang=JCL mode). Check the values on your APS
Precompiler Options window.

Examples: Before Customization Facility processing:

% &VAR = 6
% &XVAR = 7
 .
 .
 .
 ... <% &VAR + 3 + &XVAR>
 .
 .
 .
 ... <&VAR + 3 + &XVAR>

Evaluation bracket: <source>

Greater-than operator: source > source

Less-than operator: source < source

Greater-than or equal to operator: source >= source

Less-than or equal to operator: source <= source
Customization Facility User’s Guide

27

cupubb.book Page 27 Thursday, February 14, 2002 1:40 PM
After Customization Facility processing:

The Customization Facility processor replaces the variables in the first
set of brackets with their values, but does not calculate the result
because the source is a Customization Facility statement, as indicated by
the % symbol inside the brackets. At the next processing step--APS
generation--the APS generator calculates the result.

The Customization Facility processor replaces the variables in the second
set of brackets with their values and calculates the result, because the
source is not a Customization Facility statement.

 .
 .
 .
 ... <6 + 3 + 7>
 .
 .
 .
 ... <16>

Before Customization Facility processing:

% &ITEM-COUNT = 75
% &PKG-COUNT = <&ITEM-COUNT + 50> / 50

After Customization Facility processing:

The Customization Facility adds 75 to 50 and divides the result by 50;
assigns the result--2--as the value of &PKG-COUNT.

Related Topics: See... For more information about...

% SET Statements Defining evaluation bracket characters

Macro Call Using evaluation brackets to code in-line
macros
Customization Facility User’s Guide

28 Chapter 2 Structures

cupubb.book Page 28 Thursday, February 14, 2002 1:40 PM
Functions, Customization Facility

Description: Perform predefined processes in a Customization Facility macro or APS
program.

Syntax: &APS-EPILOGUE

&APS-FULL
&APS-HALF

&APS-INDENT

&APS-PROGRAM-ID

&APS-PSB-NAME

&columnnumber+source

&COMPILETIME

&DEFINED($macroname|&variablename)

&DEFVAL

&INDEX(’wholestring’, ’characterstring’)

&LENGTH(string)

&NUMERIC(&variablename)
 "literalstring"
&PARSE(&string[, &variable])
 number

&SUBSTR(string, startcolumn[, length])

&dataname+-suffix

Description: &APS-EPILOGUE Returns the last macro call in the EPILOGUE
queue. For information about calling macros
with % SET EPILOGUE, see % SET Statements.

&APS-FULL Returns a full-word binary PIC, a string
containing a 4-byte (full-word) binary picture
specification: PIC S9(9) COMP.
Customization Facility User’s Guide

29

cupubb.book Page 29 Thursday, February 14, 2002 1:40 PM
&APS-HALF Returns a half-word binary PIC, a string
containing a 2-byte (half-word) binary picture
specification: PIC S9(4) COMP.

&APS-INDENT Returns the indentation level for the current
macro. Contains the column position of the $
of the invoking macro; otherwise, contains
the column position of the left margin
(usually column 7 for COBOL).

&APS-PROGRAM-ID Returns the PROGRAM-ID name from the
Identification Division.

&APS-PSB-NAME Returns the user-specified PSB or subschema
name for your program.

&columnnumber+source Specifies the column number at which to
place source code in the output.

&COMPILETIME Returns the date and time of the compile:
dd mmm yy hh.mm.ss.

&DEFINED Determines whether a specific macro or
variable has a defined value. Returns a true
value (1) if defined, and a false value (0) if not
defined.

&DEFVAL Returns the string or number value of the last
&DEFINED variable, the string or number in
&variablename.

&INDEX Searches a string left to right for the first
occurrence of a character-string. Returns a
number identifying its character position;
return 0 if no character string. Delimiting
quotes are not included in the character
position. (See also &SUBSTR below.)

&LENGTH Returns a number specifying the length of
the argument string. Leading and trailing
blanks are included as part of a string;
delimiting quotation marks are not.

&NUMERIC Determines whether a variable is numeric.
Returns a true value (1) if numeric and a false
value (0) if non-numeric.
Customization Facility User’s Guide

30 Chapter 2 Structures

cupubb.book Page 30 Thursday, February 14, 2002 1:40 PM
&PARSE Parses a Customization Facility text string.
&String must be a variable with a string value.
The second argument can be either a literal
text string, a variable with a string value, or a
number (the number turns into a string).

The second argument is matched against the
first argument (the string value of &string).
The part of the &string value following the
match is stored back into &string with the
leading and trailing spaces eliminated. Then,
the part of the &string value preceding the
match returns as the value of the parsing
function, again with no leading and trailing
spaces. In matching the second string inside
the first string, the match does not begin
within a string that is embedded (quoted)
within the first string.

&SUBSTR Extracts a substring from a string, starting
with startcolumn and continuing for
substringlength.

String can be an alphanumeric literal string
delimited with quotation marks, or a variable
with a string value.

Startcolumn and substringlength can be a
number or variable; if substringlength is
omitted, the substring includes all characters
from startcolumn onward.

Note the following:

• If startcolumn is greater than
substringlength, or if substringlength is 0,
the result is an empty string.

• If startcolumn plus substringlength is
greater than substringlength, the result
begins with string start character and
ends with its last character; the substring
is not padded with blanks.
Customization Facility User’s Guide

31

cupubb.book Page 31 Thursday, February 14, 2002 1:40 PM
Comments: • Use the associative memory structures % DECLARE and % LOOKUP
as alternatives to the following functions: &INDEX, &LENGTH,
&NUMERIC, &PARSE, &SUBSTR.

Examples: • Enforce the position of certain macros.

% DEFINE $TP-ENTRY
 % IF &APS-INDENT < 8 OR &APS-INDENT > 11
 % SET ERROR $TP-ENTRY MUST BE INVOKED
 % ... IN AREA A

• If &FILE-2 and &FILE-3 have defined values, add them to the close
statement.

CLOSE &FILE-1
% IF &DEFINED(&FILE-2)
 ... &FILE-2
% IF &DEFINED(&FILE-3)
 ... &FILE-3

• Save two symbol lookups every time a loop is performed. Replace
the following code:

% REPEAT VARYING &SC-I FROM 1
% WHILE &DEFINED(&<&SCR>-FLD-<&SC-I>)
 % &VAR = &<&SCR>-FLD-<&SC-I>
% END

• With this code:

% REPEAT VARYING &SC-I FROM 1
% WHILE &DEFINED(&<&SCR>-FLD-<&SC-I>)
 % &VAR= &DEFVAL
% END

• Search for the first occurrence of the character string is. The value 3
is returned.

&INDEX(’THIS IS AN EXAMPLE’, ’IS’)

&dataname+suffix Appends a literal suffix to a variable data
name by coding a plus symbol (+) in the space
between them. During processing, the plus
symbol disappears (it is not replaced with a
space), and the suffix appends onto the
resolved variable value.
Customization Facility User’s Guide

32 Chapter 2 Structures

cupubb.book Page 32 Thursday, February 14, 2002 1:40 PM
• Set &II to true and test for its numeric value.

% &II = 1
% IF &NUMERIC(&II)
 /* YOU WILL GET THIS TEXT
 .
 .
 .
% END

• Use + to append the suffix -ROUTINE to the variable &SCOPE and
signify that they are two separate parts, not one variable called
&SCOPE-ROUTINE.

• Input source:

% &SCOPE = ’CALC’
PERFORM &SCOPE+-ROUTINE

• Output source:

PERFORM CALC-ROUTINE

Extract a substring from the string value of &PREFIX, starting with
column 1 and continuing for 23 characters.

% &PREFIX = &SUBSTR(&PREFIX, 1, 23)

Extract substring values from the values of &RANDOM and &STUFF, and
assign the result to MY-LANGUAGE. Note that &QT defines the delimiter
character as the apostrophe; the quotation marks delimiting the string
values are not considered part of the string and are stripped from the
output.

Input source:

% &QT = "’"
% &RANDOM = &SUBSTR("MEANINGLESS", 1, 4)
% &STUFF = &SUBSTR("EXAMPLE", 3, 5)
MY-LANGUAGE = &QT&RANDOM&STUFF&QT

Output source:

MY-LANGUAGE = ’MEANAMPLE’
Customization Facility User’s Guide

33

cupubb.book Page 33 Thursday, February 14, 2002 1:40 PM
Related Topics:

% IF/ELSE-IF/ELSE

Description: Evaluate a condition.

Syntax: % IF condition1
 statementblock
 % ELSE-IF condition2
 statementblock
 % ELSE-IF conditionN
 statementblock
 % ELSE
 statementblock
[% END]

Parameters:

Comments: • Indent each level of subordinate source code a consistent number of
columns; we recommend four columns.

• During processing, the Customization Facility moves statement
blocks to the starting columns of their controlling % IF, % ELSE-IF,
and % ELSE statements.

• The limit of % ELSE-IFs for a single % IF is 199.

See... For more information about...

% DECLARE
% LOOKUP

Associative memory structures

% SET Statements Calling EPILOGUE macros

Sample Macros Examples: of functions

condition Can be a:

Number, literal enclosed in apostrophes or
quotation marks, or variable; followed by a
space and a relational operator; followed by a
space and a value. To specify multiple
conditions, use the Boolean operators AND or
OR with no parentheses.

Relational operator can be: =, NOT =, <, >, NOT
<, NOT >, <=, >=.

Value can be a number, a literal enclosed in
apostrophes or quotation marks, or a variable.
Customization Facility User’s Guide

34 Chapter 2 Structures

cupubb.book Page 34 Thursday, February 14, 2002 1:40 PM
• This structure executes identically to the S-COBOL IF/ELSE-IF/ELSE
structure. See the "IF/ELSE-IF/ELSE" topic in the APS Reference.

Examples: Test a variable for a numeric condition.

% IF &LEN = 80
% IF &APS-INDENT < 8

Test a variable for multiple conditions.

% IF &APS-INDENT < 8 OR &APS-INDENT > 11

Test a variable for a true condition, represented by the value 1.

% &EMPLOYEE-TYPE-A = 0
% &EMPLOYEE-TYPE-B = 1
% IF &EMPLOYEE-TYPE-B
 statementblock

Nest conditional statements.

% IF condition1
 statementblock1
 % IF condition2
 % IF condition3
 statementblock2
 % ELSE-IF condition4
 % ELSE-IF condition5
 statementblock3
 % ELSE
 statementblock4
 % ELSE
 statementblock5
 % IF condition6
 % IF condition7
 statementblock6
 statementblock7

Related Topics: See... For more information about...

% REPEAT
% UNTIL/WHILE

Conditional processing

% IF Structure Example Examples: of conditional processing
Customization Facility User’s Guide

35

cupubb.book Page 35 Thursday, February 14, 2002 1:40 PM
% INCLUDE

Description: Open, read, and process a user-defined macro, copybook, or other file
in an APS program.

Syntax: % INCLUDE ddname[(membername)] [submember]

Parameters:

Comments: • If you include a copybook that contains an indexed table, use %
INCLUDE.

• In your program, you can code % INCLUDE in a file that is
INCLUDEd; you can have up to ten levels of nested INCLUDEs.

• Always use an SY* keyword--such as SYM1--with an % INCLUDE to
specify where to put the included file in the program.

Examples: • Include a macro at the top of the program.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYM1 % INCLUDE USERMACS(MY-MACRO)

• Include a macro at the bottom of the program.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYBT % INCLUDE USERMACS(MY-MACRO)

• Include a copybook in Working-Storage.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYWS % INCLUDE COPYLIB(MY-COPYBOOK)

• Include a copybook in Linkage.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYLK % INCLUDE COPYLIB(MY-COPYBOOK)

ddname Data set containing the file to include. Can be a
partitioned data set, sequential file, or instream
data set.

membername Member of ddname

submember Submember of membername
Customization Facility User’s Guide

36 Chapter 2 Structures

cupubb.book Page 36 Thursday, February 14, 2002 1:40 PM
Related Topics:

Limits, Customization Facility

APS enforces the following size and programming limitations.

Related Topics:

See... For more information about...

SY* Keywords Specifying in an APS program the location where
the Customization Facility places source code

Item Max

Indents 50

Nested macros 139

Macro call arguments 1000

Nested % INCLUDEs 10

% DECLARE statements:

Subscripts 300

Length of subscript 12

Tables 200

Parts per table 1000

Length of a table part 78

System limits:

Work files (beginning with WORK4) 8

LRECL of INCLUDE library 80

LRECL of extended INCLUDE library 140

See... For more information about...

APS Reference:
Limits

APS limits
Customization Facility User’s Guide

37

cupubb.book Page 37 Thursday, February 14, 2002 1:40 PM
% LOOKUP

Description: Reference a % DECLARE table.

Syntax: % LOOKUP &declarepart oper searchval
 [FROM value [valueN ...]]
 statementblock
[% ELSE-IF condition
 statementblock
 .
 .
 .
[% ELSE
 statementblock
[% END]

Parameters:

Comments: • If FROM is not coded, the low-order &subscript in % DECLARE is the
starting value and increments by 1 until the condition is satisfied or
an undefined instance is found.

• If the next-to-low-order DECLARE &subscript does not exist or is a
string, then only the low-order &subscript enumerates by 1.

&declarepart Name of variable assignment in % DECLARE
table

condition Condition can be a number or variable, followed
by a space and a relational operator, followed
by a space and a value. To specify multiple
conditions, use the Boolean operators AND or
OR with no parentheses.

Relational operator can be: =, NOT =, <, >, NOT
<, NOT >, <=, >=.

Value can be a number, a literal enclosed in
apostrophes or quotation marks, or a variable.

oper Valid operator: =, NOT =, <, >, NOT <, NOT >, <=,
>=.

searchval Customization Facility term.

value Starting value(s) of the low-order &subscript of
the &fieldname associated with the
&declarepart.
Customization Facility User’s Guide

38 Chapter 2 Structures

cupubb.book Page 38 Thursday, February 14, 2002 1:40 PM
Examples: • Reference a % DECLARE table.

% DECLARE &IMS-PCB-(&PCBX)-SEG-(&SEGX)
 % &IMS-PCB-SEG-NAME X30
 % &IMS-PCB-SEG-IMSNAME X8
 % &IMS-PCB-SEG-PROCOPTS
 % &IMS-PCB-SEG-PROCOPT-GET N
 % &IMS-PCB-SEG-PROCOPT-ISRT N
 % &IMS-PCB-SEG-PROCOPT-REPL N
 % &IMS-PCB-SEG-PROCOPT-DLET N
 % &IMS-PCB-SEG-LEN N6
 .
 .
% LOOKUP &IMS-PCB-SEG-NAME = &THE-SEG-NAME-YOU-WANT FROM 1 1
 do this if found
% ELSE
 do this if found

• Address &declareparts of other % DECLARE structures that use
some or all of the same &subscripts without an additional %
LOOKUP. Strip blanks from &ALIAS before the % LOOKUP by
parsing it with the function &PARSE.

% DECLARE &VS-(&VSX-FILE)-KEY-(&VSX-KEY)-B
 % &VSP-FILE-KEY-VOL X8
 % &VSP-FILE-KEY-SPACE X20
 % &VSP-FILE-KEY-CICZ X20
% DECLARE &VS-(&VSX-FILE)-KEY-(&VSX-KEY)-ALIAS-(&VSX-
ALIAS)
 % &VSP-FILE-KEY-ALIAS X30
 .
 .
&ALIAS = &PARSE(&ALIAS)
 .
 .
% LOOKUP &VSP-FILE-KEY-ALIAS = &ALIAS FROM 1 1 1
 % &VOL = &VSP-FILE-KEY-VOL

Related Topics: See... For more information about...

% DECLARE Defining % DECLARE tables
Customization Facility User’s Guide

39

cupubb.book Page 39 Thursday, February 14, 2002 1:40 PM
Macro Call

Description: Invoke a macro.

Syntax:

Format 1: $macroname [(actualarg1[, actualarg2,
% ... actualarg3, ..., actualarg1000])]

Format 2: sourcecode <$macroname(actualarg1, ... actualarg1000)>
[... sourcecode]

Parameters: actualarg Actual argument list that corresponds to the
formal argument list in the called macro’s %
DEFINE statement. Actual arguments pass
values to their corresponding formal
arguments.

Actual arguments are positional; if you omit
any argument but the last one, code a
comma in its place. Omitted arguments are
called empty arguments.

Actualarg is a local variable and retains the
values passed to it only from the time it is
invoked until it ends.

Note: A variable defined outside the scope of
a macro definition is global in scope.

An actual argument can be a:

• Number (maximum 7 digits), positive
(default) or negative

• String enclosed by apostrophes or
quotation marks

• Variable whose value is assigned in a
variable assignment statement (see
Variable Assignment Statements)

• Function (see Functions, Customization
Facility)
Customization Facility User’s Guide

40 Chapter 2 Structures

cupubb.book Page 40 Thursday, February 14, 2002 1:40 PM
Comments: • Format 2 is an in-line macro call. You can embed an in-line macro
call in any line of source code. When you do so, do the following:

• Define a variable that has the same name as the in-line macro.
Define this variable either before the in-line macro call, or at the
top of the macro.

• Assign a value to the variable. APS passes the value to the in-line
macro during processing.

• When you invoke an in-line macro, it appears immediately above
the line that contains the in-line macro call, and in the same column
as the first character of the line containing the in-line macro call.
The rest of the macro retains relative positioning.

• You can nest up to 139 macro calls in a macro call.

Examples: Pass the actual argument value 1 to the formal argument variable
&ARG1 in the macro, and the actual argument value 3 to &ARG3. In the
macro, give &ARG2 a default value of 0. Note that the extra comma
between the actual arguments 1 and the 3 is a placeholder, indicating
that the call does not pass an actual argument to &ARG2; it is an

• Comma, indicating an empty argument.
You can assign a default value to an
empty argument, as shown in the
example below.

• Code the list according to the following
rules:

• Separate arguments with a comma and
optionally one or more spaces.

• Actual arguments are positional; if you
omit any argument but the last one, code
a comma in its place. Omitted arguments
are called empty arguments.

• Enclose the argument list in parentheses.

• The maximum number of arguments in a
list is 1000.

$macroname Macro to be invoked; the macro must be
defined in the USERMACS PDS or data set in
your Project and Group
Customization Facility User’s Guide

41

cupubb.book Page 41 Thursday, February 14, 2002 1:40 PM
undefined, or empty argument. Rather than leave the empty argument
undefined, assign to it the default value 0. Also note that the call does
not pass an actual argument to &ARG4. It, however, needs no
placeholder because it is the last argument in the list; the macro
assumes it is undefined.

• Macro definition:

% DEFINE $SAMPLE-MACRO(&ARG1, &ARG2, &ARG3,
... &ARG4)
 % IF NOT &DEFINED(&ARG2)
 % &ARG2 = "0"
 % END
 .
 .
 .
% END

• Macro call:

$SAMPLE-MACRO(1,, 3)

Note: Another way to assign a default value to an empty argument is to
hard-code a variable assignment statement in the formal argument list
as follows:

% DEFINE $SAMPLE-MACRO(&ARG1, &ARG2 = defaultvalue,
% ... &ARG3, &ARG4)

Pass a new value to &NEXT-VALUE each time that the in-line macro
$CNTR is called.

% &CNTR = 0
% DEFINE $CNTR
 % &CNTR = &CNTR + 1
% END
 .
 .
% &VALUE-<$CNTR> = &NEXT-VALUE
 .
 .
% &VALUE-<$CNTR> = &NEXT-VALUE

Related Topics: See... For more information about...

% DEFINE Writing a macro % DEFINE statement
Customization Facility User’s Guide

42 Chapter 2 Structures

cupubb.book Page 42 Thursday, February 14, 2002 1:40 PM
% REPEAT

Description: Establish a loop and test a condition.

Syntax:

Format 1: % REPEAT
 statementblock
 % UNTIL|WHILE condition
[statementblock]
[% END]

Format 2: % REPEAT VARYING|R-V &variable
 % ... [FROM &variable|literal|arithmeticexpr]
 % ... [BY &variable|literal|arithmeticexpr]
 statementblock
 % ... UNTIL|WHILE condition
[statementblock]
[% END]

Format 3: % REPEAT VARYING|R-V &variable
 % ... [FROM &variable|literal|arithmeticexpr]
 % ... [BY &variable|literal|arithmeticexpr]
 % ... THRU|TO &variable|literal|arithmeticexpr
[% ... OR THRU|TO &variable|literal|arithmeticexpr]
[% ... OR THRU|TO &variable|literal|arithmeticexpr]
[% ... OR THRU|TO &variable|literal|arithmeticexpr]
 statementblock
[% END]

Parameters: condition Condition can be a number or variable,
followed by a space and a relational operator,
followed by a space and a value. To specify
multiple conditions, use the Boolean operators
AND or OR with no parentheses.

Relational operator can be: =, NOT =, <, >, NOT
<, NOT >, <=, >=.

Value can be a number, a literal enclosed in
apostrophes or quotation marks, or a variable.

statementblock Can contain any Customization Facility, COBOL
or COBOL/2, or S-COBOL statements.
Customization Facility User’s Guide

43

cupubb.book Page 43 Thursday, February 14, 2002 1:40 PM
Comments: • During processing, the Customization Facility moves % REPEAT
statement blocks to the starting columns of their controlling %
REPEAT statements.

• The statement block subordinate to the % REPEAT, and any
statement block subordinate to the % UNTIL or % WHILE, establish
the loop. The loop executes until or while the condition is satisfied.

• In formats 1 and 2, if the % UNTIL or % WHILE does not have a
subordinate statement block, APS tests the condition and does the
following:

• If the % UNTIL condition is false or the % WHILE condition is
true, the loop executes the % REPEAT statement block until the
condition is true or while the condition is false, respectively.

• If the % UNTIL condition is true or the % WHILE condition is
false, the loop ends, and processing resumes at the next line
that has the same or less indentation as the % UNTIL or %
WHILE.

• In formats 1 and 2, if the % UNTIL does have a subordinate
statement block, APS tests the condition and does the following:

• If the % UNTIL condition is false or the % WHILE condition is
true, the loop executes the % UNTIL or % WHILE statement
block and the % REPEAT statement block until the condition is
true or while the condition is false, respectively.

• If the % UNTIL condition is true or the % WHILE condition is
false, the loop ends without executing the % UNTIL or % WHILE
statement block, and processing resumes at the next line that
has the same or less indentation as the % UNTIL or % WHILE.

• In format 3, with the TO option, the loop executes to--but not
including--its specified variable, literal, or arithmetic expression.

• APS evaluates any evaluation bracket source in an % UNTIL and %
WHILE statement block at each iteration of the loop; APS evaluates
bracketed source in a % REPEAT and % REPEAT VARYING statement
block just once.

• If FROM is not coded, the default is the current value of the %
REPEAT &variable.

variable Customization Facility variable with valid
COBOL name.
Customization Facility User’s Guide

44 Chapter 2 Structures

cupubb.book Page 44 Thursday, February 14, 2002 1:40 PM
• If BY is not coded, the default is BY 1.

• APS provides an internal loop counter, LOOP-LIMIT, which defaults
to 500. To override the default, change the value of % SET LOOP-
LIMIT in the APS CNTL file APSDBDC. You can override the default
with a number as high as 999999. Be sure to reset the limit after an
% INCLUDE statement. Note that some APS libraries set LOOP-LIMIT
and reset it to 200 at the end.

Related Topics:

% SET Statements

Description: • Specify the program location where the Customization Facility
places source code.

• Override default processing.

Syntax: • Program location statements:

% SET COMMUNICATION [SECTION]

% SET DATA [DIVISION]

% SET END-WORKING-STORAGE

% SET FILE-CONTROL

% SET FILE [SECTION]

% SET LINKAGE [SECTION]

% SET PROCEDURE

% SET SPECIAL-NAMES

% SET WORKING-STORAGE

See... For more information about...

% UNTIL/WHILE Testing % REPEAT loops

Evaluation Brackets Specifying the order in which the Customization
Facility evaluates variable values

Looping Example Examples: of looping
Customization Facility User’s Guide

45

cupubb.book Page 45 Thursday, February 14, 2002 1:40 PM
• Processing override statements:

% SET AUXILIARY-OUTPUT
% SET NORMAL-OUTPUT

% SET BLANK
% SET NOBLANK

% SET CONVERT-LOWER-CASE
% SET PRESERVE-LOWER-CASE

% SET DELIMITERS-OPTIONAL
% SET DELIMITERS-REQUIRED

% SET EPILOGUE [$macroname]

% SET EVAL-BRACKETS ’leftright’
% SET EVAL-BRACKETS-AUX ’leftright’

% SET LEFT-MARGIN column
% SET RIGHT-MARGIN column

% SET ERROR message text
% SET FATAL message text
% SET INFO message text
% SET WARNING message text

% SET LOOP-LIMIT

SET TRACE ERROR [NOINFO]
SET NOTRACE

% SET WRITE-CONTROL[-LIMIT number]
% SET NOWRITE-CONTROL

Description:

NORMAL-OUTPUT |
AUXILIARY-OUTPUT

NORMAL-OUTPUT (default) directs all source code to the
file with the external name POSTSOUT.

AUXILIARY-OUTPUT directs all source code to the file with
the external name MACRO.

Note: You must define MACRO and its accompanying DD
name in your JCL.
Customization Facility User’s Guide

46 Chapter 2 Structures

cupubb.book Page 46 Thursday, February 14, 2002 1:40 PM
BLANK | NOBLANK BLANK (default) prints all blank lines that appear in the
input.

NOBLANK suppresses blank lines from printing.

COMMUNICATION [SECTION] Moves all source code appearing between this statement
and the next % SET statement from the Procedure Division
to the end of the Communication Section.

PRESERVE LOWER-CASE |
CONVERT-LOWER-CASE

PRESERVE-LOWER-CASE (default) allows developers to use
both upper and lower case characters in Customization
Facility structures.

CONVERT-LOWER-CASE converts lower case characters in
Customization Facility structures to upper case.

DATA [DIVISION] Moves all source code appearing between this statement
and the next % SET statement from the Procedure Division
to immediately after the Data Division header.

DELIMITERS-REQUIRED |
DELIMITERS-OPTIONAL

DELIMITERS-REQUIRED (default) requires developers to
delimit strings with apostrophes or quotation marks,
depending on the value you set on the APS Precompiler
Options window.

DELIMITERS-OPTIONAL allows developers to omit
delimiters around all strings except those that consist of all
numbers or include special characters.

END-WORKING-STORAGE Marks a spot in Working-Storage to place source code that
you move from the Procedure Division to Working-Storage
using the % SET WORKING-STORAGE statement. Non-APS
preprocessors can reserve the end of Working-Storage for
their constructions.

ERROR | FATAL | WARNING | INFO
messagetext

Sends a message to the final message report of the
compile. Enclose variables in messagetext with evaluation
brackets.

EPILOGUE [$macroname] Calls macroname after all other Customization Facility
processing finishes. Although you can specify only one
macro call per EPILOGUE statement, you can write multiple
statements. APS stores all EPILOGUE macro calls in an
EPILOGUE queue, and invokes them in "last in, first called"
order. The variable &APS-EPILOGUE contains the name of
the macro call that is currently last in the EPILOGUE queue.
Assuming that you code the EPILOGUE statement
anywhere in the Procedure Division, APS places the
invoked macros at the end of the Procedure Division.
Customization Facility User’s Guide

47

cupubb.book Page 47 Thursday, February 14, 2002 1:40 PM
To eliminate the current "last in" macro from the queue,
follow the last % SET EPILOGUE statement with a % SET
EPILOGUE statement, without specifying the macro name;
APS gets the macro name value from &APS-EPILOGUE.

Important: The results of calling APS macros in an
EPILOGUE macro can be unpredictable. We recommend
that you call only user-defined macros in an EPILOGUE
macro.

EVAL-BRACKETS ’leftright’ Defines the characters to use as evaluation brackets.
Default is < and >. We recommend using the default
because that is what the APS macros use; we do not
recommend using the parentheses characters as brackets.

EVAL-BRACKETS-AUX ’leftright’ Defines an auxiliary set of evaluation bracket characters to
supplement the primary set defined by % SET EVAL-
BRACKETS. Ensure that % SET EVAL-BRACKETS is also
defined.

FILE-CONTROL Moves all source code appearing between this statement
and the next % SET statement from the Procedure Division
to the end of the File-Control paragraph. APS generates
the Input-Output Section and File-Control headers unless
they are in the input source or if the macro is an EPILOGUE
(see EPILOGUE above).

FILE [SECTION] Moves all source code appearing between this statement
and the next % SET statement from the Procedure Division
to the end of the File Section. APS generates the File
Section header unless it is in the input source or if the
macro is an EPILOGUE (see EPILOGUE above).

LEFT-MARGIN columnnumber
RIGHT-MARGIN columnnumber

Default: columns 1-72. Overrides the LANG option on the
APS Precompiler Options window, which specifies the
columns for the Customization Facility to process. Use
these statements to specify the leftmost and rightmost
columns to process, within the parameters of the value of
LANG.

LINKAGE [SECTION] Use in the Procedure Division to move all source code
appearing between this statement and the next % SET
statement to the end of the Linkage Section. APS
generates the Linkage Section header unless it is in the
input source or if the macro is invoked by % SET EPILOGUE
(see EPILOGUE above).
Customization Facility User’s Guide

48 Chapter 2 Structures

cupubb.book Page 48 Thursday, February 14, 2002 1:40 PM
Examples: Store three macro calls in the EPILOGUE queue, but invoke just
$MACRO-1.

% SET EPILOGUE $MACRO-1
% SET EPILOGUE $MACRO-2
% SET EPILOGUE $MACRO-3
 %* Current value of &APS-EPILOGUE is $MACRO-3.
 .
 .

LOOP-LIMIT Overrides the internal loop counter default (500) in the
APS CNTL file APSDBDC. Override with a number as high as
999999. Because some APS libraries reset LOOP-LIMIT to
200, you might need to reset the limit after an % INCLUDE
statement.

PROCEDURE Mark the end of the preceding relocation statement and
return to the location of the statement (not the beginning
or end of the Procedure Division).

SPECIAL-NAMES Use in the Procedure Division to move all source code
appearing between this statement and the next % SET
statement to the end of the Special-Names paragraph. APS
generates the Special-Names header unless it is in the
input source or if the macro is an EPILOGUE (see EPILOGUE
above).

TRACE ERROR [NOINFO] TRACE ERROR traces all source code appearing between
this statement and NOTRACE and reports on all errors of
all severity levels--F(atal), E(rror), W(arning), and
I(nformation). TRACE ERROR displays error messages and
other information including: the line of source that caused
the error; active % INCLUDE statements; active macros;
and the number of loops completed at the time of error (if
applicable)

TRACE ERROR NOINFO traces all levels of errors except
I(nformation).

WORKING-STORAGE Use in the Procedure Division to move all source code
appearing between this statement and the next % SET
statement to the end of the Working-Storage Section or
immediately in front of the % SET END-WORKING-
STORAGE statement, if coded.

WRITE-CONTROL
[-LIMIT number] and
NOWRITE-CONTROL

WRITE-CONTROL prints in the output all Customization
Facility source code appearing between this statement and
% SET NOWRITE-CONTROL; default is 5000 lines.
Customization Facility User’s Guide

49

cupubb.book Page 49 Thursday, February 14, 2002 1:40 PM
 .
% SET EPILOGUE
 %* $MACRO-3 (the current value of &APS-EPILOGUE) is
 %* elminated from the EPILOGUE queue;
 %* the new current value of &APS-EPILOGUE is $MACRO-2.
 .
 .
 .
% SET EPILOGUE
 %* $MACRO-2 (the current value of &APS-EPILOGUE) is
 %* eliminated from the EPILOGUE queue;
 %* the new current value of &APS-EPILOGUE is $MACRO-1.
 %* $MACRO-1 (the current value of &APS-EPILOGUE) is
 %* invoked.

Related Topics:

SY* Keywords

Description: Specify in an APS program the location where the Customization Facility
places source code.

Syntax: -KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYBT macrocode

 SYEN macrocode

 SYDD macrocode

 SYFD macrocode

 SYIO macrocode

 SYLT macrocode

 SYLK macrocode

See... For more information about...

SY* Keywords Specifying in an APS program the location where
the Customization Facility places source code

Evaluation Brackets Specifying the order in which the Customization
Facility evaluates variable values

Program Location
Statements Example

Examples: of program location statements
Customization Facility User’s Guide

50 Chapter 2 Structures

cupubb.book Page 50 Thursday, February 14, 2002 1:40 PM

 SYM1 macrocode

 SYM2 macrocode

 SYRP macrocode

 SYWS macrocode

Locations in
Generated Code

Environment Division

Data Division

Procedure Division

Comments: • The effect of a SY* keyword ends with the appearance of another
keyword in the KYWD column.

SYM1 At the beginning of the program, before macro libraries that
you include at the beginning of the program

SYM2 After macro libraries that you include at the beginning of the
program

SYEN In the Environment Division, after the Special-Names
paragraph

SYIO In the Input-Output Section, after macro libraries that you
include at the beginning of the Input-Output Section

SYDD At the beginning of the Data Division

SYFD In the File Section, after macro libraries that you include at
the beginning of the File Section

SYWS In the Working-Storage Section, after macro libraries and
data structures that you include in Working-Storage

SYLT In the Linkage Section, after macro libraries and data
structures that you include at the beginning of Linkage

SYLK In the Linkage Section, after source code that you include
with the SYLT keyword

SYRP In the Report Section, after any macro libraries that you
include at the beginning of the Report Section

SYBT At the end of the program
Customization Facility User’s Guide

51

cupubb.book Page 51 Thursday, February 14, 2002 1:40 PM
• The generation process shifts the macrocode to start in column 8.

Examples: • Include a macro at the top of the program.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYM1 % INCLUDE USERMACS(MY-MACRO)

• Include a macro at the bottom of the program.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYBT % INCLUDE USERMACS(MY-MACRO)

• Place a variable assignment statement at the top of the program.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYM1 &TP-USER-LEN = 49

• Include a copybook in Working-Storage.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYWS % INCLUDE COPYLIB(MY-COPYBOOK)

• Include a copybook in Linkage.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
 SYLK % INCLUDE COPYLIB(MY-COPYBOOK)

Related Topics:

% UNTIL/WHILE

Description: Establish a loop and test a condition to execute a subordinate statement
block either until or while a single or compound condition is satisfied.

Syntax: % UNTIL|WHILE condition
 statementblock
[% END]

See... For more information about...

% SET Statements Specifying the program location where the
Customization Facility places source code

% INCLUDE Including macros or copybooks in a macro

APS Reference:
"Keywords"

Other APS keywords
Customization Facility User’s Guide

52 Chapter 2 Structures

cupubb.book Page 52 Thursday, February 14, 2002 1:40 PM
Parameter:

Comments: • During processing, the Customization Facility moves % UNTIL and %
WHILE statement blocks to the starting columns of their controlling
% UNTIL and % WHILE statements.

• The % UNTIL statement block executes until the condition is true.
Conversely, the % WHILE statement block executes while the
condition is false.

• When the % UNTIL condition is true or the % WHILE condition is
false, the loop ends without executing the % UNTIL or % WHILE
statement block, and processing resumes at the next line that has
the same or less indentation as the % UNTIL or % WHILE.

• APS provides an internal loop counter, LOOP-LIMIT, which defaults
to 500. To override the default, change the value of % SET LOOP-
LIMIT in the APS CNTL file APSDBDC. You can override the default
with a number as high as 999999. Be sure to reset the limit after an
% INCLUDE statement. Note that some APS libraries set LOOP-LIMIT
and reset it to 200 at the end.

• APS evaluates any evaluation bracket source in an % UNTIL and %
WHILE statement block at each iteration of the loop; APS evaluates
bracketed source in a % REPEAT and % REPEAT VARYING statement
block just once.

• Use % UNTIL or % WHILE with a % REPEAT loop to add a
conditional test to the % REPEAT loop.

Related Topics:

condition Valid values:

• Constant numeric term

• Relational operator can be: =, NOT =, <, >, NOT <,
NOT >, <=, >=.

• Variable that has a numeric true/false value

AND or OR may connect multiple logical terms. Do not
use parentheses.

See... For more information about...

% REPEAT Using % UNTIL or % WHILE with a % REPEAT loop

Looping Example Examples: of looping
Customization Facility User’s Guide

53

cupubb.book Page 53 Thursday, February 14, 2002 1:40 PM
Variable Assignment Statements

Description: Assign a value to a Customization Facility variable.

Syntax: % &variable = stringterm|numericterm

Parameters:

Examples: • Assign the literal value SPACE to the variable &TEST-CHR.

% &TEST-CHR = ’SPACE’

• Assign the APS substringing function &SUBSTR to the variable &A.

% &A = &SUBSTR(&B, 3, 5)

• Assign the numeric value 121 to the variable &REC-LEN.

% &REC-LEN = 121

• Assign the variable &B, whose value is a number, to the variable &A.

% &B = 100
% &A = &B

numericterm Numeric term can be one or a combination of:

• A number (maximum 7 digits), positive (default) or
negative

• A number that is a true/false representation of a
variable, where 0 = false and nonzero = true

• An arithmetic expression with arithmetic operators
listed in order of processing: * (multiplication), /
(division), + (addition), - (subtraction)

• A Customization Facility number function

variable Valid COBOL name

stringterm String term can be:

• Text enclosed by apostrophes or quotation marks

• A &variable with a string value

• A Customization Facility string function
Customization Facility User’s Guide

54 Chapter 2 Structures

cupubb.book Page 54 Thursday, February 14, 2002 1:40 PM
• Assign the representation of true to the variable &EMPLOYEE-TYPE-
B and test whether that variable is true.

% &EMPLOYEE-TYPE-A = 0
% &EMPLOYEE-TYPE-B = 1
% IF &EMPLOYEE-TYPE-B

• Assign the value of &B + &C to the variable &A. Assume the values
of &B and &C are numeric.

% &A = &B + &C

• Divide &LINELENGTH by 2, divide &NN by 2, and subtract the result
of &NN / 2 from the result of &LINELENGTH / 2. Assign the final
result as the value of &COL.

% &COL = &LINELENGTH / 2 - &NN / 2

• Concatenate two strings, &B and &C, and assign the result as the
value of &A. Rather than delimiting &B and &C with apostrophes,
delimit them with variables that have the value of an apostrophe so
that the Customization Facility processor does not process ’&B&C’ as
a string.

% &SQ = "’"
% &B = ’CON’
% &C = ’CAT’
% &A = <% &SQ&B&C&SQ>

Related Topics: See... For more information about...

Functions,
Customization Facility

Using Customization Facility functions
Customization Facility User’s Guide

55

cupubb.book Page 55 Thursday, February 14, 2002 1:40 PM
3 Sample Macros

This chapter contains sample macros you can use to customize APS.

% IF Structure Example
This sample macro uses the % IF structure to build a program that tests
records for any specific character and replaces some occurrences of it
with any other specific character, depending on the character’s mode
(for example, whether the character appears as a leading or trailing
character, or anywhere). The variables that control what you search for
and replace with (and the length of the record read) appear at the top
of the program. Thus, you can use this macro many different times for
many different purposes simply by changing the values of a few
variables.

Input source:
 % &MODE = ’TRAILING’ 201.
 % &REC-LEN = 121 202.
 % &TEST-CHR = ’SPACE’ 203.
 % &REPLACE-CHR = ’ZERO’ 204.
 IDENTIFICATION DIVISION. 205.
 PROGRAM-ID. EXAMPLE2. 206.
*SPECIAL CONSIDERATIONS. 207.
* SAMPLE PROGRAM TO READ RECS WHOSE LENGTH IS DETERMINED AT 208.
* AT COMPILE-TIME & REPLACE SOME OCCURRENCES OF TEST-CHR 209.
* BY THE REPLACE-CHR (BOTH TO BE SET AT COMPILE-TIME). 210.
* REPLACEMENT MODE USED (LEADING, TRAILING, OR ALL) 211.
* IS SET AT COMPILE-TIME. 212.
 213.
 ENVIRONMENT DIVISION. 214.
 INPUT-OUTPUT SECTION. 215.
 FILE-CONTROL. 216.
 SELECT INPUT-FILE ASSIGN-UT-S-INPUT. 217.
 SELECT OUTPUT-FILE ASSIGN-UT-S-OUTPUT. 218.
 219.
Customization Facility User’s Guide

56 Chapter 3 Sample Macros

cupubb.book Page 56 Thursday, February 14, 2002 1:40 PM
 DATA DIVISION. 220.
 FILE SECTION. 221.
 222.
 FD INPUT-FILE 223.
 BLOCK CONTAINS 0 RECORDS 224.
 LABEL RECORDS ARE STANDARD. 225.
 01 INPUT-RECORD PIC X(&REC-LEN). 226.
 227.
 FD OUTPUT-FILE 228.
 BLOCK CONTAINS 0 RECORDS 229.
 LABEL RECORDS ARE STANDARD. 230.
 01 OUTPUT-RECORD PIC X(&REC-LEN). 231.
 232.
 WORKING-STORAGE SECTION. 233.
 234.
 01 WS-RECORD. 235.
 02 WS-CHR PIC X OCCURS &REC-LEN. 236.
 237.
 01 II PIC S9(3) COMP SYNC. 238.
 239.
 PROCEDURE DIVISION. 240.
 241.
 OPEN INPUT INPUT-FILE 242.
 OPEN OUTPUT OUTPUT-FILE 243.
 244.
 REPEAT 245.
 READ INPUT-FILE INTO WS-RECORD 246.
 UNTIL AT END ON INPUT-FILE 247.
 % IF &MODE = ’LEADING’ 248.
 REPEAT VARYING II FROM 1 BY 1 249.
 UNTIL II > &REC-LEN 250.
 ... OR WS-CHR (II) NOT = &TEST-CHR 251.
 WS-CHR (II) = &REPLACE-CHAR 252.
 % ELSE-IF &MODE = ’TRAILING’ 253.
 REPEAT VARYING II FROM &REC-LEN BY -1 254.
 UNTIL II < 1 255.
 ... OR WS-CHR (II) NOT = &TEST-CHR 256.
 WS-CHR (II) = &REPLACE-CHAR 257.
 % ELSE-IF &MODE = ’ALL’ 258.
 REPEAT VARYING II FROM 1 BY 1 259.
 UNTIL II > &REC-LEN 260.
 IF WS-CHR (II) = &TEST-CHR 261.
 WS-CHR (II) = &REPLACE-CHAR 262.
 % ELSE 263.
 DISPLAY "PARAMETER ERROR IMPROPER MODE:" &MODE 264.
 265.
 WRITE OUTPUT-RECORD FROM WS-RECORD 266.
 267.
 CLOSE INPUT-FILE OUTPUT-FILE 268.
Customization Facility User’s Guide

% IF Structure Example 57

cupubb.book Page 57 Thursday, February 14, 2002 1:40 PM
Output source:
020500 IDENTIFICATION DIVISION. 205.
020600 PROGRAM-ID. EXAMPLE2. 206.
020700*SPECIAL CONSIDERATIONS. 207.
020800* PROGRAM TO READ RECS WHOSE LENGTH IS DETERMINED AT 208.
020900* COMPILE-TIME & REPLACE SOME OCCURRENCES OF TEST-CHR 209.
021000* BY THE REPLACE-CHR (BOTH TO BE SET AT COMPILE-TIME). 210.
021100* REPLACEMENT MODE USED (LEADING, TRAILING OR ALL) 211.
021200* IS SET AT COMPILE-TIME. 212.
021300 213.
021400 ENVIRONMENT DIVISION. 214.
021500 INPUT-OUTPUT SECTION. 215.
021600 FILE-CONTROL. 216.
021700 SELECT INPUT-FILE ASSIGN UT-S-INPUT. 217.
021800 SELECT OUTPUT-FILE ASSIGN UT-S-OUTPUT. 218.
021900 219.
022000 DATA DIVISION. 220.
022100 FILE SECTION. 221.
022200 222.
022300 FD INPUT-FILE 223.
022400 BLOCK CONTAINS 0 RECORDS 224.
022500 LABEL RECORDS ARE STANDARD. 225.
022600 01 INPUT-RECORD PIC X(121). 226.
022700 227.
022800 FD OUTPUT-FILE 228.
022900 BLOCK CONTAINS 0 RECORDS 229.
023000 LABEL RECORDS ARE STANDARD. 230.
023100 01 OUTPUT-RECORD PIC X(121). 231.
023200 232.
023300 WORKING-STORAGE SECTION. 233.
023400 234.
023500 01 WS-RECORD. 235.
023600 02 WS-CHR PIC X OCCURS 121. 236.
023700 237.
023800 01 II PIC S9(3) COMP SYNC. 238.
023900 239.
024000 PROCEDURE DIVISION. 240.
024100 241.
024200 OPEN INPUT INPUT-FILE 242.
024300 OPEN OUTPUT OUTPUT-FILE 243.
024400 244.
024500 REPEAT 245.
024600 READ INPUT-FILE INTO WS-RECORD 246.
024700 UNTIL AT END ON INPUT-FILE 247.
025400 REPEAT VARYING II FROM 121 BY -1 254.
025500 UNTIL II < 1 255.
025600 ... OR WS-CHR (II) NOT = SPACE 256.
Customization Facility User’s Guide

58 Chapter 3 Sample Macros

cupubb.book Page 58 Thursday, February 14, 2002 1:40 PM
025700 WS-CHR (II) = ZERO 257.
026600 WRITE OUTPUT-RECORD FROM WS-RECORD 266.
026700 267.
026800 CLOSE INPUT-FILE OUTPUT-FILE 268.

Discussion
• Lines 201-204 of Input. Variables are assigned values. These

variables are used in the Procedure Division to replace any trailing
space with a zero.

• Lines 245-247 and 266-268.

• Input: The S-COBOL REPEAT verb establishes a loop that can be
tested at the middle or end. The statement blocks subordinate
to REPEAT and UNTIL form the loop and are executed
repeatedly under control of the condition specified by the
UNTIL statement (for example, until the end of file). At end of
file, processing continues at line 268 After line 268, S-COBOL
generates a STOP RUN.

• Output: These lines are copied into the output source because
they contain no Customization Facility syntax.

• Lines 253-257.

• Input: This statement block is executed because &MODE has
been assigned the value ’TRAILING’ at the top of the program.
REPEAT VARYING ... UNTIL ... is an extension of the S-COBOL
REPEAT verb. It establishes a test and causes its subordinate
statement block to be executed repeatedly until the test is true.

• Output: Line 253 does not appear in the output because it is a
Customization Facility statement. The other lines do appear. The
variables &REC-LEN, &TEST-CHR, and &REPLACE-CHR are
resolved with their values 121, SPACE, and ZERO. The loop starts
at the 121st character, is decremented by 1, and executes line
257 until a trailing character appears that is not a space or until
all 121 characters have been tested.

• Lines 263-265.

• Input: If &MODE is neither LEADING, TRAILING, or ALL, control
falls to this % ELSE statement and displays an error message.
Customization Facility User’s Guide

Looping Example 59

cupubb.book Page 59 Thursday, February 14, 2002 1:40 PM
• Output: Note that input line 265 is blank. It does not appear in
the output because it is considered part of the statement block
subordinate to % ELSE. Remember: a statement block ends with
the first non-blank character at the same or less indentation
than the controlling conditional statement. To get the blank
line to appear in the output, end the conditional structure by
inserting a line beneath line 264 and coding % END at the same
indentation as % ELSE; then leave the next line blank.

Looping Example
This program calls two user macros that use loops to create a data
structure. A loop that incorporates built-in functions returns a value to
text.

User macros:
 %* HERE ARE TWO MACROS: $ITEM-MAKER AND $TABLE-MAKER 601.
 602.
 % DEFINE $ITEM-MAKER(&MM, &DATANAME, &TAIL) 603.
 % &II = 1 604.
 % WHILE &II <= &MM 605.
 02 &DATANAME+-&II &40+PIC &TAIL. 606.
 % &II = &II + 1 607.
 % END 608.
 609.
 % DEFINE $TABLE-MAKER(&MM, &NN, &TNAME, &INAME, &TAIL) 610.
 % &II = 1 611.
 % WHILE &II <= &MM 612.
 02 &TNAME+-&II. 613.
 % &JJ = 1 614.
 % UNTIL &JJ > &NN 615.
 % BEGIN 616.
 03 &INAME+-&II+-&JJ &40+PIC &TAIL. 617.
 % &JJ = &JJ + 1 618.
 % &II = &II + 1 619.
 % END 620.
 621.
Customization Facility User’s Guide

60 Chapter 3 Sample Macros

cupubb.book Page 60 Thursday, February 14, 2002 1:40 PM
Program input:
 % SET BLANK 622.
 IDENTIFICATION DIVISION. 623.
 PROGRAM-ID. EXAMPLE6. 624.
*SPECIAL CONSIDERATIONS. 625.
* DEMONSTRATE LOOPING. 626.
 627.
 --------------------------------------- 628.
 --------------------------------------- 629.
 630.
 WORKING-STORAGE SECTION. 631.
 632.
 01 TEST-RECORD. 633.
 $ITEM-MAKER(12, ’TEST-ITEM’, ’S9(9) COMP SYNC VALUE -1’) 634.
 $TABLE-MAKER(3, 4, ’ENTRY’, ’ITEM’, ’X(4) VALUE SPACES’) 635.
 % &STR = ’MISSISSIPPI’ 637.
 % &SUB = ’IS’ 638.
 % &II = 0 639.
 % REPEAT 640.
 % &JJ = &INDEX(&STR, &SUB) 641.
 % UNTIL &JJ = 0 642.
 % &II = &II + 1 643.
 % &JJ = &JJ + &LENGTH(&SUB) 644.
 % &STR = &SUBSTR(&STR, &JJ) 645.
 THE NUMBER OF ’IS’ IN ’MISSISSIPPI’ IS &II. 646.
 647.

Program output:
062300 IDENTIFICATION DIVISION. 623.
062400 PROGRAM-ID. EXAMPLE6. 624.
062500*SPECIAL CONSIDERATIONS. 625.
062600* DEMONSTRATE LOOPING. 626.
062700 627.
062800 ----------------------------------- 628.
062900 ----------------------------------- 629.
063000 630.
063100 WORKING-STORAGE SECTION. 631.
063200 632.
063300 01 TEST-RECORD. 633.
063400 02 TEST-ITEM-1 PIC S9(9) COMP SYNC VALUE -1. 634.
063402 02 TEST-ITEM-2 PIC S9(9) COMP SYNC VALUE -1. 623.
063404 02 TEST-ITEM-3 PIC S9(9) COMP SYNC VALUE -1. 634.
063406 02 TEST-ITEM-4 PIC S9(9) COMP SYNC VALUE -1. 634.
063408 02 TEST-ITEM-5 PIC S9(9) COMP SYNC VALUE -1. 634.
Customization Facility User’s Guide

Looping Example 61

cupubb.book Page 61 Thursday, February 14, 2002 1:40 PM
063410 02 TEST-ITEM-6 PIC S9(9) COMP SYNC VALUE -1. 634.
063412 02 TEST-ITEM-7 PIC S9(9) COMP SYNC VALUE -1. 634.
063414 02 TEST-ITEM-8 PIC S9(9) COMP SYNC VALUE -1. 634.
063416 02 TEST-ITEM-9 PIC S9(9) COMP SYNC VALUE -1. 634.
063418 02 TEST-ITEM-10 PIC S9(9) COMP SYNC VALUE -1. 634.
063420 02 TEST-ITEM-11 PIC S9(9) COMP SYNC VALUE -1. 634.
063422 02 TEST-ITEM-12 PIC S9(9) COMP SYNC VALUE -1. 634.
063500 02 ENTRY-1. 635.
063502 03 ITEM-1-1 PIC X(4) VALUE SPACES. 635.
063504 03 ITEM-1-2 PIC X(4) VALUE SPACES. 635.
063506 03 ITEM-1-3 PIC X(4) VALUE SPACES. 635.
063508 03 ITEM-1-4 PIC X(4) VALUE SPACES. 635.
063510 02 ENTRY-2. 635.
063512 03 ITEM-2-1 PIC X(4) VALUE SPACES. 635.
063514 03 ITEM-2-2 PIC X(4) VALUE SPACES. 635.
063516 03 ITEM-2-3 PIC X(4) VALUE SPACES. 635.
063518 03 ITEM-2-4 PIC X(4) VALUE SPACES. 635.
063520 02 ENTRY-3. 635.
063522 03 ITEM-3-1 PIC X(4) VALUE SPACES. 635.
063524 03 ITEM-3-2 PIC X(4) VALUE SPACES. 635.
063526 03 ITEM-3-3 PIC X(4) VALUE SPACES. 635.
063528 03 ITEM-3-4 PIC X(4) VALUE SPACES. 635.
063600 636.
064600 THE NUMBER OF ’IS’ IN ’MISSISSIPPI’ IS 2. 646.
064700 647.

Discussion
• Macro lines 603-608. The macro $ITEM-MAKER is defined with three

formal arguments whose values are supplied by the macro call in
the program on line 634. % WHILE starts a loop that is executed
repeatedly while the value of &II is <= to the value of &MM. The
loop generates the 02 TEST-ITEM data elements (see output line
634). Note the two uses of the plus symbol in line 606. Used in
&DATANAME+-&II, the plus concatenates the two variables,
resulting in TEST-ITEM-1 for the first data item. On the next line, &II
is incremented by one during each loop, resulting in TEST-ITEM-2 for
the second data item, etc. The second use for the plus symbol is to
place the value of PIC &TAIL in column 40 of the output for each
TEST-ITEM.

• Macro lines 610-620. The macro $TABLE-MAKER is defined with five
formal arguments whose values are supplied by the macro call in
the program on line 635. % WHILE starts an outer loop that
repeatedly executes lines 613-619 while the value of &II is <= the
Customization Facility User’s Guide

62 Chapter 3 Sample Macros

cupubb.book Page 62 Thursday, February 14, 2002 1:40 PM
value of &MM. The outer loop generates the 02 data elements
ENTRY-1, ENTRY-2, and ENTRY-3. & UNTIL starts a nested, inner loop.
Its subordinate statement block (lines 616-618) is executed
repeatedly until the value of &JJ is > the value of &NN. The inner
loop generates the 03 data elements for the outer loop 02s. Note
that the % BEGIN statement means that the 03 data items will
appear in the output shifted left four spaces in the inner loop so
that they are indented two spaces from the 02 data items. Without
% BEGIN, they would be at the same indentation as the 02s. (The
whole outer and inner loop structure shifts as a unit, thus all lines
retain their relative positioning.) Line 618 increments the inner loop
variable &JJ. Line 619 increments the outer loop variable &II; note
that to be part of the outer loop, it must be indented from the
outer loop but not from the inner loop. The loops generate the
multiple lines output from both loops appears in the multiple lines
634-635.

• Line 622, Input. % SET BLANK means that all blank lines that follow
appear in the output

• Lines 637-646, Input. These lines illustrate a % REPEAT and % UNTIL
structure that uses the built-in functions &INDEX, &LENGTH, and
&SUBSTR to find the number of occurrences of the substring IS in
the literal string MISSISSIPPI. Lines 641-645 are executed repeatedly
until &JJ = 0.

Customization Facility Functions Example

User macro:
 %* HERE IS THE MACRO $DAYDEF 501.
 502.
 % DEFINE $DAYDEF(&DAY) 506.
 % &PREFIX = &SUBSTR(&DAY, 1, 24) 507.
 % &CHR = &SUBSTR(&PREFIX, 24) 508.
 % IF &CHR = ’-’ 509.
 % &PREFIX = &SUBSTR(&PREFIX, 1, 23) 510.
 % &SUFFIX = ’-ENTRY’ 511.
 % &DAYCTR = &DAYCTR + 1 512.
 02 &PREFIX&SUFFIX. 513.
 03 FILLER &40+PIC S9(2) COMP SYNC VALUE +&LENGTH(&DAY).514.
Customization Facility User’s Guide

Customization Facility Functions Example 63

cupubb.book Page 63 Thursday, February 14, 2002 1:40 PM
 % IF &LENGTH(&DAY) <= 16 515.
 03 FILLER &40+PIC X(30) VALUE &QT&DAY&QT. 516.
 % ELSE 517.
 03 FILLER &40+PIC X(30) VALUE 518.
 &40+&QT&DAY&QT. 519.
 % END 520.
 521.

Program input:
 % &DAYCTR = 0 522.
 % &QT = "’" 523.
 524.
 % SET BLANK 525.
 IDENTIFICATION DIVISION. 526.
 PROGRAM-ID. EXAMPLE&INDEX(’ABCDEFG’, ’EF’). 527.
 DATE-COMPILED. &COMPILETIME. 528.
*SPECIAL CONSIDERATIONS. 529.
* A PIECE OF A SAMPLE PROGRAM TO DEMONSTRATE SOME 530.
* OF THE MACRO FACILITY BUILT-IN FUNCTIONS. 531.
 532.
 -- 533.
 -- 534.
 535.
 WORKING-STORAGE SECTION. 536.
 537.
 01 DAY-TABLE. 538.
 $DAYDEF(’SUNDAY’) 539.
 $DAYDEF(’MONDAY’) 540.
 $DAYDEF(’TUESDAY’) 541.
 $DAYDEF(’WEDNESDAY’) 542.
 $DAYDEF(’THURSDAY’) 543.
 $DAYDEF(’FRIDAY’) 544.
 $DAYDEF(’A-LARGE-SYMBOL-TO-CHECK-DAYDEF’) 545.
 01 DAY-TABLE-REDEF REDEFINES DAY-TABLE. 546.
 02 DAY-ENTRY OCCURS &DAYCTR. 547.
 03 DAY-LEN PIC S9(2) COMP SYNC. 548.
 03 DAY-BOL PIC X(30). 549.
 550.
 PROCEDURE DIVISION. 551.
 552.
 -- 553.
 -- 554.
Customization Facility User’s Guide

64 Chapter 3 Sample Macros

cupubb.book Page 64 Thursday, February 14, 2002 1:40 PM
Program output:
052300 IDENTIFICATION DIVISION. 526.
052400 PROGRAM-ID. EXAMPLE5. 527.
052500 DATE-COMPILED. 22 OCT 79 14.24.00. 528.
052600*SPECIAL CONSIDERATIONS. 529.
052700* A PIECE OF A SAMPLE PROGRAM TO DEMONSTRATE SOME 530.
052800* OF THE MACRO FACILITY BUILT-IN FUNCTIONS. 531.
052900 532.
053000 -- 533.
053100 -- 534.
053200 535.
053300 WORKING-STORAGE SECTION. 536.
053400 537.
053500 01 DAY-TABLE. 538.
053600 02 SUNDAY-ENTRY. 539.
053602 03 FILLER PIC S9(2) COMP SYNC VALUE +6 539.
053604 03 FILLER PIC X(30) VALUE ’SUNDAY’. 539.
053700 02 MONDAY-ENTRY. 540.
053702 03 FILLER PIC S9(2) COMP SYNC VALUE +6. 540.
053704 03 FILLER PIC X(30) VALUE ’MONDAY’. 540.
053800 02 TUESDAY-ENTRY. 541.
053802 03 FILLER PIC S9(2) COMP SYNC VALUE +7. 541.
053804 03 FILLER PIC X(30) VALUE ’TUESDAY’. 541.
053900 02 WEDNESDAY-ENTRY. 542.
053902 03 FILLER PIC S9(2) COMP SYNC VALUE +9. 542.
053904 03 FILLER PIC X(30) VALUE ’WEDNESDAY’. 542.
054000 02 THURSDAY-ENTRY. 543.
054002 03 FILLER PIC S9(2) COMP SYNC VALUE +8. 543.
054004 03 FILLER PIC X(30) VALUE ’THURSDAY’. 543.
054100 02 FRIDAY-ENTRY. 544.
054102 03 FILLER PIC S9(2) COMP SYNC VALUE +6. 544.
054104 03 FILLER PIC X(30) VALUE ’FRIDAY’. 544.
054200 02 A-LARGE-SYMBOL-TO-CHECK-ENTRY. 545.
054202 03 FILLER PIC S9(2) COMP SYNC VALUE +30.545.
054204 03 FILLER PIC X(30) VALUE 545.
054206 ’A-LARGE-SYMBOL-TO-CHECK-DAYDEF’.545.
054300 01 DAY-TABLE-REDEF REDEFINES DAY-TABLE. 546.
054400 02 DAY-ENTRY OCCURS 7. 547.
054500 03 DAY-LEN PIC S9(2) COMP SYNC. 548.
054600 03 DAY-BOL PIC X(30). 549.
054700 550.
054800 PROCEDURE DIVISION. 551.
054900 552.
055000 -- 553.
055100 -- 554.
Customization Facility User’s Guide

Customization Facility Functions Example 65

cupubb.book Page 65 Thursday, February 14, 2002 1:40 PM
Discussion

The $DAYDEF Macro

$DAYDEF uses the built-in functions &SUBSTR and &LENGTH to build a
data structure for a table. $DAYDEF builds for each table entry an 02-
level data name and provides the values of the VALUE clauses of the
two 03-level entries that follow it. The 02-level data name is constructed
as &PREFIX&SUFFIX.

The value of &SUFFIX for each macro call is the literal string -ENTRY.

The value of &PREFIX is supplied by the formal argument &DAY which
receives its value from a macro call to $DAYDEF. For example, the first
macro call in the program gives the value SUNDAY to &DAY. The built-in
function &SUBSTR checks this value and dictates that up to 24 characters
will be accepted (values longer than 24 characters are truncated). On
the next line, &SUBSTR checks to see whether the 24th character (if
there is one) is a hyphen. If it is a hyphen, only 23 characters are used in
order to prevent a double hyphen which would be undesirable (for
example, you don’t want a hyphen from the name followed by the
hyphen of the suffix -ENTRY). SUNDAY is only 6 characters long, so the
entire value is accepted as the value for &PREFIX. Thus the value of
&PREFIX&SUFFIX for the first call is SUNDAY-ENTRY.

Now $DAYDEF provides the values of the VALUE clauses of the two 03-
level data elements for SUNDAY-ENTRY. In the first 03 element, VALUE
+&LENGTH(&DAY) becomes VALUE +6 because the value of &DAY
(which is SUNDAY) is 6 characters long. The plus symbol is recognized as
the COBOL plus symbol because there is a space before it. (In contrast,
the plus symbol in &40+PIC is recognized as a Customization Facility
column indicator, which in this case means "Put the PIC clause in
column 41.")

Line 515 checks to see whether the length of the values of &DAY can fit
all on one line (for example, whether it is 16 characters maximum). If it
can fit, its format is the one on line 516 (remember: the line will shift
under the % IF statement during processing). If it cannot fit, its format
is the two-line format on lines 518-519.
Customization Facility User’s Guide

66 Chapter 3 Sample Macros

cupubb.book Page 66 Thursday, February 14, 2002 1:40 PM
The Program:
• Lines 527-528, Input. &INDEX returns a number which identifies the

character position of the first occurrence of EF within ABCDEFG. The
number is 5 -- thus EXAMPLE&INDEX(’ABCDEFG’, ’EF’) becomes
EXAMPLE5. This is simply an illustrative example, not a particularly
useful one. &COMPILETIME, however, returns the current date and
time each time the program is compiled.

• Lines 539-545, Input. These are seven macro calls to $DAYDEF, each
providing a value for the &DAY argument in $DAYDEF.

• Line 547. The OCCURS clause value &DAYCTR is initialized to 0 at the
top of the program and is used in $DAYDEF.

Program Location Statements Example
This example illustrates the use of program location statements and in-
line macros. In addition to showing macros, program input and the
resultant Customization Facility output, this example goes one step
further and shows the program after APS Precompiler processing.

User macros:
 1. % DEFINE $IN-LINE(&ARG)
 2. COUNTER = &ARG
 3. % &IN-LINE = &ARG
 4. % END
 5. % DEFINE $MY-EPILOGUE
 6. % * MARK COLUMN 7 MARGIN
 7. % SET LINKAGE
 8. 01 MY-EPILOGUE-CHR &40+PIC X.
 9. % SET PROCEDURE
10. COUNTER = 100
11. % SET EPILOGUE $SECOND-EPILOGUE
12. % DEFINE $SECOND-EPILOGUE
13. % BEGIN
14. COUNTER = 101
15. % SET EPILOGUE $MY-EPILOGUE
Customization Facility User’s Guide

Program Location Statements Example 67

cupubb.book Page 67 Thursday, February 14, 2002 1:40 PM
Program input:
16. % SET EVAL-BRACKETS "<>"
17. IDENTIFICATION DIVISION.
18. PROGRAM-ID.
19. EXAMPLE9.
20. ENVIRONMENT DIVISION.
21. INPUT-OUTPUT SECTION.
22. FILE-CONTROL.
23. SELECT YOUR-FILE ASSIGN UT-S-YOURFILE.
24. DATA DIVISION.
25. FILE SECTION.
26. FD YOUR-FILE.
27. 01 YOUR-RECORD PIC X(80).
28. WORKING-STORAGE SECTION.
29. 01 COUNTER PIC S9(4) COMP.
30. 01 WS-1 PIC X.
31. % SET END-WORKING-STORAGE
32. * PLACE FOR STUFF THAT MUST BE AT END OF WS FOR
33. * CERTAIN NON-APS PRE-PROCESSORS.
34. PROCEDURE DIVISION.
35. COUNTER = 1
36. $IN-LINE(2)
37. TEST-NO-DELIMITERS = <$IN-LINE(3)>
38. ADD <$IN-LINE(4)> <$IN-LINE(5)> TO COUNTER
39. % SET LINKAGE
40. 01 LINKAGE-STUFF PIC X.
41. % SET PROCEDURE
42. % SET DELIMITERS-OPTIONAL
43. $IN-LINE(TEST-NO-DELIMITERS)
44. $IN-LINE(6)
45. % SET DATA
46. * PLACING DATA IN DATA DIVISION
47. % SET PROCEDURE
48. % SET FILE
49. FD MY-FILE.
50. 01 MY-RECORD PIC X(80).
51. % SET PROCEDURE
52. % SET FILE-CONTROL
53. SELECT MY-FILE ASSIGN UT-S-MYFILE.
54. % SET PROCEDURE
55. OPEN INPUT MY-FILE YOUR-FILE
56. CLOSE MY-FILE YOUR-FILE
57. % SET WORKING-STORAGE
58. 01 TEST-NO-DELIMITERS PIC 9(&IN-LINE).
59. % SET PROCEDURE
61. % SET AUXILIARY-OUTPUT
Customization Facility User’s Guide

68 Chapter 3 Sample Macros

cupubb.book Page 68 Thursday, February 14, 2002 1:40 PM
62. THIS IS AUXILIARY FILE DATA
63. % SET NORMAL-OUTPUT

Output source:
001700 IDENTIFICATION DIVISION. 17.
001800 PROGRAM-ID. 18.
001900 EXAMPLE9. 19.
002000 ENVIRONMENT DIVISION. 20.
002100 INPUT-OUTPUT SECTION. 21.
002200 FILE-CONTROL. 22.
002300 SELECT YOUR-FILE ASSIGN UT-S-YOURFILE. 23.
005300 SELECT MY-FILE ASSIGN UT-S-MYFILE. 53.
005302 DATA DIVISION. 24.
005304* PLACING DATA IN DATA DIVISION 46.
005306 FILE SECTION. 25.
005308 FD YOUR-FILE. 26.
005310 01 YOUR-RECORD PIC X(80). 27.
005312 FD MY-FILE. 49.
005314 01 MY-RECORD PIC X(80). 50.
005316 WORKING-STORAGE SECTION. 28.
005318 01 COUNTER PIC S9(4) COMP. 29.
005320 01 WS-1 PIC X. 30.
005322 01 TEST-NO-DELIMITERS PIC 9(6).
005324* PLACE FOR STUFF THAT MUST BE AT END OF WS FOR 32.
005326* CERTAIN NON-APS PRE-PROCESSORS. 33.
005328 LINKAGE SECTION.
005330 01 LINKAGE-STUFF PIC X. 40.
006300 01 MY-EPILOGUE-CHR PIC X.
006302 PROCEDURE DIVISION. 34.
006304 COUNTER = 1 35.
006306 COUNTER = 2
006308 COUNTER = 3
006310 TEST-NO-DELIMITERS = 3
006312 COUNTER = 4
006314 COUNTER = 5
006316 COUNTER = COUNTER + 4 5
006318 COUNTER = TEST-NO-DELIMITERS
006320 COUNTER = 6
006322 OPEN INPUT MY-FILE YOUR-FILE 55.
006324 CLOSE MY-FILE YOUR-FILE 56.
006326*/* THIS IS AN S-COBOL COMMENT LINE. 60.
006328 COUNTER = 100 11.
006330 COUNTER = 101 15.
Customization Facility User’s Guide

Program Location Statements Example 69

cupubb.book Page 69 Thursday, February 14, 2002 1:40 PM
Discussion
• Lines 1-14, Macros. Three macros are defined: $IN-LINE, $MY-

EPILOGUE, and $SECOND-EPILOGUE.

• Line 15, Macros. % SET EPILOGUE $MY-EPILOGUE causes $MY-
EPILOGUE to be automatically invoked at the very end of the
program (after line 63).

• Line 31, Input. A marker for the code on line 58 that is relocated to
WORKING-STORAGE; it will go immediately above this marker.

• Line 36, Input. $IN-LINE is invoked, passing the actual argument 2 to
the macro formal argument &ARG. The result appears in output line
6306 (COUNTER = 2).

• Line 37, Input. First, the contents of the evaluation brackets are
evaluated. The brackets contain a call to the $IN-LINE macro,
passing the argument 3 to the macro argument &ARG. Thus the
macro is called and the result appears in output line 6308 (COUNTER
= 3). Next, the contents of the brackets are resolved, giving TEST-
NO-DELIMITERS a value. The value comes from a variable within
$IN-LINE that exists for this purpose;. this variable must have same
name as the macro it belongs to, and its value is the same as the
argument passed to the macro (for example, 3). Thus <$IN-LINE(3)>
is replaced by 3, and TEST-NO-DELIMITERS = 3 is output to line 6310.

• Line 38, Input. Outputs lines 6312-6316. If we had wanted to add 45
to COUNTER instead of 4 and 5, we would have omitted the space
between the first and second appearance of the in-line macro.

• Lines 39-41, Input. Line 39 generates the LINKAGE SECTION
statement and relocates line 40 to the Linkage Section (see output
lines 5328-5330); line 41 ends the effect of % SET LINKAGE.

• Line 42, Input. Lets us omit delimiters around string arguments, as
on line 43.

• Line 45-47, Input. Line 45 relocates line 46 to immediately after the
DATA DIVISION statement (see output line 5304); line 47 ends the
effect of % SET DATA.

• Line 48-51, Input. Line 48 relocates lines 49-50 to the end of the File
Section (see output lines 5312-5314); line 51 ends the effect of %
SET FILE.
Customization Facility User’s Guide

70 Chapter 3 Sample Macros

cupubb.book Page 70 Thursday, February 14, 2002 1:40 PM
• Lines 52-54, Input. Line 52 relocates line 53 to the end of FILE-
CONTROL.; line 54 ends the effect of % SET FILE-CONTROL.

• Lines 57-59, Input. Line 57 relocates line 58 to the end of WORKING-
STORAGE; line 59 ends the effect of % SET WORKING-STORAGE.

• Lines 61-63, Input. Valid only for APS for z/OS product; line 61 causes
line 62 to be output to an external auxiliary file named MACRO; line
63 ends the effect of % SET AUXILIARY-OUTPUT.

• Line 6328, Output. Line 15 of the macro source (% SET EPILOGUE
$MY-EPILOGUE) put $MY-EPILOGUE in the storage area called
EPILOGUE. All macros in EPILOGUE are automatically invoked at the
end of the program, after all other all Customization Facility
processing is completed, starting with the last macro put into
EPILOGUE. Because $MY-EPILOGUE is the only macro in EPILOGUE, it
is invoked. The result is line 6328 in the output.

During processing of $MY-EPILOGUE, % SET LINKAGE relocates line
9 to the end of the Linkage Section (line 6300), and puts COUNTER =
100 at the end of the Procedure Division (line 6328). Line 15 is an
EPILOGUE statement nested within a $MY-EPILOGUE; it puts
$SECOND-EPILOGUE into the EPILOGUE area. The processing of
$MY-EPILOGUE is now completed.

Now that $MY-EPILOGUE is finished and $SECOND-EPILOGUE has
become the last macro existing in EPILOGUE, $SECOND-EPILOGUE is
automatically invoked.

After the above program is processed by the Customization Facility, it is
processed by the APS Precompiler. The result is shown below. Note the
additional lines (5324 through 5340 and 6236 through 6242) that have
been generated by the Precompile process.

After APS Precompiler processing:
001700 IDENTIFICATION DIVISION. 17.
001800 PROGRAM-ID. 18.
001900 EXAMPLE9. 19.
002000 ENVIRONMENT DIVISION. 20.
002100 INPUT-OUTPUT SECTION. 21.
002200 FILE-CONTROL. 22.
002300 SELECT YOUR-FILE ASSIGN UT-S-YOURFILE. 23.
005300 SELECT MY-FILE ASSIGN UT-S-MYFILE. 53.
Customization Facility User’s Guide

Program Location Statements Example 71

cupubb.book Page 71 Thursday, February 14, 2002 1:40 PM
005302 DATA DIVISION. 24.
005304* PLACING DATA IN DATA DIVISION 46.
005306 FILE SECTION. 25.
005308 FD YOUR-FILE. 26.
005310 01 YOUR-RECORD PIC X(80). 27.
005312 FD MY-FILE. 49.
005314 01 MY-RECORD PIC X(80). 50.
005316 WORKING-STORAGE SECTION. 28.
005318 77 COUNTER PIC S9(4) COMP. 29.
005320 01 WS-1 PIC X. 30.
005322 01 TEST-NO-DELIMITERS PIC 9(6).
005322
005324 01 GENERATED--FLAGS.
005326 05 TRUE PIC X VALUE ’T’.
005328 88 ALWAYS VALUE ’T’.
005330 88 NEVER VALUE ’F’.
005332 05 FALSE PIC X VALUE ’F’.
005334 05 YOUR-FILE--END PIC X.
005336 05 YOUR-FILE--INV PIC X.
005338 05 MY-FILE--END PIC X.
005340 05 MY-FILE--INV PIC X.
005342
005344* PLACE FOR STUFF THAT MUST BE AT END OF WS FOR 32.
005346* CERTAIN NON-APS PRE-PROCESSORS. 33.
005348 LINKAGE SECTION.
005350 01 LINKAGE-STUFF PIC X. 40.
006200 01 MY-EPILOGUE-CHR PIC X.
006202 PROCEDURE DIVISION. 34.
006204 MAIN--SECTION SECTION. 35.
006206 MAIN--SECTION--PARA. 35.
006208 COUNTER = 1. 35.
006210 COUNTER = 2.
006212 COUNTER = 3.
006214 TEST-NO-DELIMITERS = 3.
006216 COUNTER = 4.
006218 COUNTER = 5.
006220 COUNTER = COUNTER + 4 5
006222 COUNTER = TEST-NO-DELIMITERS.
006224 COUNTER = 6.
006226 OPEN INPUT MY-FILE YOUR-FILE. 55.
006228 CLOSE MY-FILE YOUR-FILE. 56.
006230* THIS IN AN S-COBOL COMMENT LINE 60.
006232 COUNTER = 100. 11.
006234 COUNTER = 101. 15.
006236 MAIN--SECTION--EXIT. 15.
006238 EXIT PROGRAM. 15.
006240 MAIN--SECTION--EXIT. 15.
006242 STOP RUN. 15.
Customization Facility User’s Guide

72 Chapter 3 Sample Macros

cupubb.book Page 72 Thursday, February 14, 2002 1:40 PM
Customization Facility User’s Guide

73

cupubb.book Page 73 Thursday, February 14, 2002 1:40 PM
4 Administration

The Customization Facility Control System lets APS administrators
regulate developer access to user-defined Customization Facility
macros. Use it to do the following:

• Restrict all developers from using any user-defined macros (default)

• Allow all developers to use all user-defined macros

• Specify selected user-defined macros that all developers can use by
creating a rule list, which is a list of those macros or macro libraries.

To create a rule list, follow these steps:

1 Starting on the APS Main Menu, select the following Actions to
access the Customization Control Menu:

• Utilities

• Custom Utilities

• Admin and Config Facility

• Customization Facility Control System

2 On the Customization Control Menu, select Enable/Disable
Customization Control. The Customization Control Activation
window displays.

3 Complete the window as follows:

Field Description and Values

Password Enter the Customization Facility Control
System password supplied with your APS
software.

Change Password Lets you change the password.

New Password If you select the Change Password option,
enter a new password in this field.

Display Settings Displays whether the control system is on or
off.
Customization Facility User’s Guide

74 Chapter 4 Administration

cupubb.book Page 74 Thursday, February 14, 2002 1:40 PM
4 In the USERMACS PDS or data set, create a control file and specify in
it the names of macros that developers can use or create. To enable
the use of all macros in a specific macro library, specify the macro
library name. You will use this control file to generate the rule list in
step 7. For example, to enable the use of the macros macro1 and
macro2, and all macros in the macro libraries maclibx and macliby,
write the following statements:

//INPUT project1.group1.USERMACS
$macro1
$macro2
maclibx
macliby

5 Redisplay the Customization Control Menu as described in step 1.

6 On the Customization Control Menu, select Actions, Rule List
Maintenance. The Rule List Maintenance window displays.

7 Complete the window as follows:

8 Select Build New Rule List to generate the rule list.

Restrict All Macro
Usage

Default. Restricts developers from using any
user-defined Customization Facility macros.

Enable Macro Usage Allows developers to use all user-defined
Customization Facility macros or those
macros that you specify in a rule list.

Field Description and Values

Field Description

Password Enter your Customization Facility password.

Control File Specify the fully qualified name of the
control file that you created in step 4.

Output File Specify the fully qualified rule list name. The
rule list must be named MACROLST and
reside in the APS CNTL PDS or data set. For
example,

SYS1.APS5000.CNTL.MACROLST

Options V Generates a report of macros in the rule
list.
Customization Facility User’s Guide

75

Index

cupubb.book Page 75 Thursday, February 14, 2002 1:40 PM
Symbols

$ Customization Facility symbol 7
% Customization Facility symbol 7
& Customization Facility symbol 7, 28
+ column indicator 29
+ variable/suffix concatenator 31

A
arguments

in macro calls 7, 39
in macro definitions 7, 22

auxiliary evaluation brackets 47

B
BEGIN Customization Facility statement 15
BLANK Customization Facility statement 46
blank lines

in Customization Facility macros 46
brackets, evaluation

setting 47
using 25

C

calling Customization Facility macros 39
column indicator Customization Facility

function 29
Comments

in Customization Facility macros 16
COMMUNICATION SECTION Customization

Facility statement 46
COMPILETIME Customization Facility func-

tion 29
concatenating

variable and suffix 31
conditional processing with Customization

Facility
IF structure 33
REPEAT structure 42
UNTIL structure 42, 51
WHILE structure 42, 51

continuation
in Customization Facility macros 17

CONVERT-LOWER-CASE Customization Facil-
ity statement 46

copylibs/copybooks
including in program 35, 49

Customization Control Activation Window
73

Customization Facility macros
APS and user-defined 5
arguments in macro calls 39
arguments in macro definitions 22
blank lines 46
calling 39
Comments 16
conditional processing 33, 42, 51
Customization Facility User’s Guide

76

cupubb.book Page 76 Thursday, February 14, 2002 1:40 PM
continuing statements 17
DECLARE structures 18
definition statement 22
error handling 23, 46, 48
escaping from 24
evaluation brackets 25
examples 9, 55
functions 28
IF structures 33
including macro libraries 35, 49
indentation 15
limits 36
LOOKUP structures 37
looping 42, 51
overview 5
positioning output 15
program locations, specifying for source

49
SET statements 49
SY* keywords 49
symbols, reserved 7
trace facility 23
variables, assigning values 53

D
DATA DIVISION Customization Facility state-

ment 46
debugging programs

Customization Facility source 23
DECLARE Customization Facility structure 18
DEFINE Customization Facility statement 22
DEFINED Customization Facility function 29
DEFVAL Customization Facility function 29
DELIMITERS Customization Facility statement

46

E

END-WORKING-STORAGE Customization Fa-
cility statement 46

EPILOGUE Customization Facility function 28
EPILOGUE Customization Facility statement

46
ERROR Customization Facility statement 23,

46
error handling

Customization Facility 23, 46, 48
ESCAPE Customization Facility statement 24
EVAL-BRACKETS Customization Facility state-

ment 47
evaluation brackets

setting 47
using 25

F
FATAL Customization Facility statement 23,

46
File Section

SET FILE SECTION statement 47
FILE-CONTROL Customization Facility state-

ment 47
flags

loop counters, LOOP-LIMIT 44, 48, 52
FULL word Customization Facility function 28
functions

Customization Facility 28

H
HALF word Customization Facility function

29
Customization Facility User’s Guide

77

cupubb.book Page 77 Thursday, February 14, 2002 1:40 PM
I
IF Customization Facility structure 33
including in programs

copylibs/copybooks 35, 49
macro libraries 35, 49

INDENT Customization Facility function 29
indentation

Customization Facility structures 15
INDEX Customization Facility function 29
INFO Customization Facility statement 23, 46

L
LENGTH Customization Facility function 29
limits, Customization Facility 36
Linkage Section

SET LINKAGE SECTION statement 47
literals, Customization Facility

appending to variables 31
as macro call arguments 39
concatenating 54
continuing in statements 17
delimiters 46
parsing 30

locations, program
specifying for Customization Facility

source 49
LOOKUP Customization Facility structure 37
looping

loop counters, LOOP-LIMIT 44, 48, 52
REPEAT Customization Facility statement

42
SET LOOP-LIMIT Customization Facility

statement 48
UNTIL Customization Facility statement

42, 51
WHILE Customization Facility statement

42, 51

LOOP-LIMIT Customization Facility statement
48

LOOP-LIMIT flag 44, 48, 52

M
macros, user-defined

see Customization Facility macros
MARGIN Customization Facility statement 47
margins

setting for Customization Facility pro-
cessing 47

N
nested IF statement 34
NOBLANK Customization Facility statement

46
NOTRACE Customization Facility statement

48
NOWRITE-CONTROL Customization Facility

statement 48
NUMERIC Customization Facility function 29

P
PARSE Customization Facility function 30
plus symbol

as column indicator 29
as variable/suffix concatenator 31

PRESERVE-LOWER- CASE Customization Facil-
ity statement 46

Procedure Division
SET PROCEDURE statement 48

program locations
specifying for Customization Facility

source 49
Customization Facility User’s Guide

78

cupubb.book Page 78 Thursday, February 14, 2002 1:40 PM
PROGRAM-ID Customization Facility function
29

PSB-NAME Customization Facility function 29

R

REPEAT Customization Facility statement 42
REPEAT VARYING Customization Facility

statement 42
Rule List Maintenance window 74

S
SET BLANK Customization Facility statement

46
SET COMMUNICATION SECTION Customiza-

tion Facility statement 46
SET CONVERT-LOWER-CASE Customization

Facility statement 46
SET DATA DIVISION Customization Facility

statement 46
SET DELIMITERS Customization Facility state-

ment 46
SET END-WORKING-STORAGE Customization

Facility statement 46
SET EPILOGUE Customization Facility state-

ment 46
SET ERROR Customization Facility statement

23, 46
SET EVAL-BRACKETS Customization Facility

statement 47
SET FATAL Customization Facility statement

23, 46
SET FILE SECTION Customization Facility

statement 47
SET FILE-CONTROL Customization Facility

statement 47
SET INFO Customization Facility statement

23, 46

SET LINKAGE SECTION Customization Facility
statement 47

SET LOOP-LIMIT Customization Facility state-
ment 48

SET MARGIN Customization Facility state-
ment 47

SET NOBLANK Customization Facility state-
ment 46

SET NOTRACE Customization Facility state-
ment 48

SET NOWRITE-CONTROL Customization Facil-
ity statement 48

SET PRESERVE-LOWER-CASE Customization
Facility statement 46

SET PROCEDURE Customization Facility state-
ment 48

SET SPECIAL-NAMES Customization Facility
statement 48

SET TRACE ERROR Customization Facility
statement 23, 48

SET WARNING Customization Facility state-
ment 23, 46

SET WORKING-STORAGE Customization Fa-
cility statement 48

SET WRITE-CONTROL Customization Facility
statement 24, 48

size limitations in APS 36
SPECIAL-NAMES Customization Facility state-

ment 48
SUBSTR Customization Facility function 30,

32
symbols

Customization Facility reserved 7

T
TRACE ERROR Customization Facility state-

ment 23, 48
trace facility

Customization Facility 23
Customization Facility User’s Guide

79

cupubb.book Page 79 Thursday, February 14, 2002 1:40 PM
U
UNTIL Customization Facility statement 42,

51

V
variables, Customization Facility

assigning values to 53
concatenating suffix to 31

W
WARNING Customization Facility statement

23, 46
WHILE Customization Facility statement 42,

51
windows, APS

Customization Control Activiation win-
dow 73

Rule List Maintenance window 74
WORKING-STORAGE Customization Facility

statement 48
WRITE-CONTROL Customization Facility

statement 24, 48
Customization Facility User’s Guide

80

cupubb.book Page 80 Thursday, February 14, 2002 1:40 PM
Customization Facility User’s Guide

	Customization Facility User's Guide
	Table of Contents
	1 Customization Facility Concepts
	2 Structures
	3 Sample Macros
	% IF Structure Example
	Discussion

	Looping Example
	Discussion

	Customization Facility Functions Example
	Discussion
	The $DAYDEF Macro
	The Program:

	Program Location Statements Example
	Discussion

	4 Administration
	Index

